【題目】將四個(gè)不同的小球放入三個(gè)分別標(biāo)有1、2、3號(hào)的盒子中,不允許有空盒子的放法有多少種?下列結(jié)論正確的有( ).
A.B.C.D.18
【答案】BC
【解析】
根據(jù)題意,分析可得三個(gè)盒子中有1個(gè)中放2個(gè)球,有2種解法:
(1)分2步進(jìn)行①先將四個(gè)不同的小球分成3組,②將分好的3組全排列,對(duì)應(yīng)放到3個(gè)盒子中,由分步計(jì)數(shù)原理計(jì)算可得答案;
(2)分2步進(jìn)行①在4個(gè)小球中任選2個(gè),在3個(gè)盒子中任選1個(gè),將選出的2個(gè)小球放入選出的小盒中,②將剩下的2個(gè)小球全排列,放入剩下的2個(gè)小盒中,由分步計(jì)數(shù)原理計(jì)算可得答案.
根據(jù)題意,四個(gè)不同的小球放入三個(gè)分別標(biāo)有13號(hào)的盒子中,且沒有空盒,則三個(gè)盒子中有1個(gè)中放2個(gè)球,剩下的2個(gè)盒子中各放1個(gè),
有2種解法:
(1)分2步進(jìn)行
①先將四個(gè)不同的小球分成3組,有種分組方法;
②將分好的3組全排列,對(duì)應(yīng)放到3個(gè)盒子中,有種放法;
則沒有空盒的放法有種;
(2)分2步進(jìn)行
①在4個(gè)小球中任選2個(gè),在3個(gè)盒子中任選1個(gè),將選出的2個(gè)小球放入選出的小盒中,有種情況;
②將剩下的2個(gè)小球全排列,放入剩下的2個(gè)小盒中,有種放法;
則沒有空盒的放法有種;
故選:BC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一袋中有標(biāo)有號(hào)碼1、2、3、4的卡片各一張,每次從中取出一張,記下號(hào)碼后放回,當(dāng)四種號(hào)碼的卡片全部取出時(shí)即停止,則恰好取6次卡片時(shí)停止的概率為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有兩個(gè)零點(diǎn),則下列說法錯(cuò)誤的是( )
A.B.C.有極大值點(diǎn),且D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】口袋中放有20個(gè)球,其中白球9個(gè)、紅球5個(gè)、黑球6個(gè),現(xiàn)從中任取10個(gè)球,使得白球不少于個(gè)不多于7個(gè),紅球不少于2個(gè)不多于5個(gè)、黑球不多于3個(gè)的取法種數(shù)是( )
A. 14 B. 24
C. 13 D. 36
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,。
(1)當(dāng)時(shí),求f(x)的最大值。
(2)若函數(shù)f(x)的零點(diǎn)個(gè)數(shù)為2個(gè),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國工業(yè)經(jīng)濟(jì)發(fā)展迅速,工業(yè)增加值連年攀升,某研究機(jī)構(gòu)統(tǒng)計(jì)了近十年(從2008年到2017年)的工業(yè)增加值(萬億元),如下表:
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
工業(yè)增加值 | 13.2 | 13.8 | 16.5 | 19.5 | 20.9 | 22.2 | 23.4 | 23.7 | 24.8 | 28 |
依據(jù)表格數(shù)據(jù),得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
5.5 | 20.6 | 82.5 | 211.52 | 129.6 |
(1)根據(jù)散點(diǎn)圖和表中數(shù)據(jù),此研究機(jī)構(gòu)對(duì)工業(yè)增加值(萬億元)與年份序號(hào)的回歸方程類型進(jìn)行了擬合實(shí)驗(yàn),研究人員甲采用函數(shù),其擬合指數(shù);研究人員乙采用函數(shù),其擬合指數(shù);研究人員丙采用線性函數(shù),請(qǐng)計(jì)算其擬合指數(shù),并用數(shù)據(jù)說明哪位研究人員的函數(shù)類型擬合效果最好.(注:相關(guān)系數(shù)與擬合指數(shù)滿足關(guān)系).
(2)根據(jù)(1)的判斷結(jié)果及統(tǒng)計(jì)值,建立關(guān)于的回歸方程(系數(shù)精確到0.01);
(3)預(yù)測(cè)到哪一年的工業(yè)增加值能突破30萬億元大關(guān).
附:樣本 的相關(guān)系數(shù),
,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次購物抽獎(jiǎng)活動(dòng)中,假設(shè)某10張券中有一等獎(jiǎng)券2張,每張可獲價(jià)值50元的獎(jiǎng)品;有二等獎(jiǎng)券2張,每張可獲價(jià)值10元的獎(jiǎng)品;其余6張沒有獎(jiǎng).某顧客從此10張獎(jiǎng)券中任抽2張,求:
(1)該顧客中獎(jiǎng)的概率;
(2)該顧客獲得的獎(jiǎng)品總價(jià)值X元的概率分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“難度系數(shù)”反映試題的難易程度,難度系數(shù)越大,題目得分率越高,難度也就越。“難度系數(shù)”的計(jì)算公式為,其中,為難度系數(shù),為樣本平均失分,為試卷總分(一般為100分或150分).某校高三年級(jí)的李老師命制了某專題共5套測(cè)試卷(每套總分150分),用于對(duì)該校高三年級(jí)480名學(xué)生進(jìn)行每周測(cè)試.測(cè)試前根據(jù)自己對(duì)學(xué)生的了解,預(yù)估了每套試卷的難度系數(shù),如下表所示:
試卷序號(hào) | 1 | 2 | 3 | 4 | 5 |
考前預(yù)估難度系數(shù) | 0.7 | 0.64 | 0.6 | 0.6 | 0.55 |
測(cè)試后,隨機(jī)抽取了50名學(xué)生的數(shù)據(jù)進(jìn)行統(tǒng)計(jì),結(jié)果如下:
試卷序號(hào) | 1 | 2 | 3 | 4 | 5 |
實(shí)測(cè)平均分 | 102 | 99 | 93 | 93 | 87 |
(1)根據(jù)試卷2的難度系數(shù)估計(jì)這480名學(xué)生第2套試卷的平均分;
(2)從抽樣的50名學(xué)生的5套試卷中隨機(jī)抽取2套試卷,記這2套試卷中平均分超過96分的套數(shù)為,求的分布列和數(shù)學(xué)期望;
(3)試卷的預(yù)估難度系數(shù)和實(shí)測(cè)難度系數(shù)之間會(huì)有偏差.設(shè)為第套試卷的實(shí)測(cè)難度系數(shù),并定義統(tǒng)計(jì)量,若,則認(rèn)為本專題的5套試卷測(cè)試的難度系數(shù)預(yù)估合理,否則認(rèn)為不合理.試檢驗(yàn)本專題的5套試卷對(duì)難度系數(shù)的預(yù)估是否合理.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則取它的項(xiàng):第一次取1;第二次取2個(gè)連續(xù)偶數(shù)2,4;第三次取3個(gè)連續(xù)奇數(shù)5,7,9;第四次取4個(gè)連續(xù)偶數(shù)10,12,14,16;第五次取5個(gè)連續(xù)奇數(shù)17,19,21,23,25,按此規(guī)律取下去,得到一個(gè)子數(shù)列1,2,4,5,7,9,10,12,14,16,17,19…,則在這個(gè)子數(shù)中第2014個(gè)數(shù)是( )
A. 3965 B. 3966 C. 3968 D. 3989
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com