如圖,線段AB=8,點(diǎn)C在線段AB上,且AC=2,P為線段CB上一動點(diǎn),點(diǎn)A繞點(diǎn)C旋轉(zhuǎn)后與點(diǎn)B繞點(diǎn)P旋轉(zhuǎn)后重合于點(diǎn)D.設(shè)CP=x,△CPD的面積為f(x).則f(x)的定義域?yàn)開_____;f(x)的最大值為______.
精英家教網(wǎng)
由題意,DC=2,CP=x,DP=6-x
∵△CPD,∴
2+x>6-x
2+6-x>x
x+6-x>2
解得x∈(2,4)
如圖,三角形的周長是一個定值8,
故其面積可用海倫公式表示出來即f(x)=
4×(4-x)×(4-6+x)×2
=
-8x2+48x-64

∴f′(x)=
-16x+48
-8x2+48x-64

令 f′(x)=0,解得x=3
∵x∈(2,3)f'(x)>0,x∈(3,4)f'(x)<0
∴f(x)的最大值為f(3)=2
2

故答案為(2,4);2
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,線段AB=8,點(diǎn)C在線段AB上,且AC=2,P為線段CB上一動點(diǎn),點(diǎn)A繞點(diǎn)C旋轉(zhuǎn)后與點(diǎn)B繞點(diǎn)P旋轉(zhuǎn)后重合于點(diǎn)D.設(shè)CP=x,△CPD的面積為f(x).則f(x)的定義域?yàn)?!--BA-->
 
;f(x)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,線段AB=8,點(diǎn)C在線段AB上,且AC=2,P為線段CB上一動點(diǎn),點(diǎn)A繞點(diǎn)C旋轉(zhuǎn)后與點(diǎn)B繞點(diǎn)P旋轉(zhuǎn)后重合于點(diǎn)D.設(shè)CP=x,△CPD的面積為f(x).則f(x)的定義域?yàn)?!--BA-->
 
; f′(x)的零點(diǎn)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,線段AB=8,點(diǎn)C在線段AB上,且AC=2,P為線段BC上的一動  點(diǎn),點(diǎn)A繞點(diǎn)C旋轉(zhuǎn)后與點(diǎn)B繞點(diǎn)P旋轉(zhuǎn)后重合于點(diǎn)D,設(shè)CP=x,△PCD的面積為f(x),則f(x)的最大值為
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,線段AB=8,點(diǎn)C在線段AB上,且AC=2,P為線段CB上一動點(diǎn),點(diǎn)A繞著C旋轉(zhuǎn)后與點(diǎn)B繞點(diǎn)P旋轉(zhuǎn)后重合于點(diǎn)D,設(shè)CP=x,△CPD的面積為f(x).
(1)求x的取值范圍;
(2)求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,線段AB=8,點(diǎn)C在線段AB上,且AC=2,P為線段CB上一動點(diǎn),點(diǎn)A繞點(diǎn)C旋轉(zhuǎn)后與點(diǎn)B繞點(diǎn)P旋轉(zhuǎn)后重合于點(diǎn)D.設(shè)CP=x,△CPD的面積為f(x).則f(x)的最大值為( 。

查看答案和解析>>

同步練習(xí)冊答案