函數(shù)f(x)(x∈R)為偶函數(shù),且f(x)在[0,+∞)上是增函數(shù),則f(-2)、f(-π)、f(3)的大小順序是(  )

A.f(-π)>f(3)>f(-2)                    B.f(-π)>f(-2)>f(3)

C.f(-π)<f(3)<f(-2)                    D.f(-π)<f(-2)<f(3)

 

【答案】

A

【解析】

試題分析:函數(shù)為偶函數(shù),則,所以,。由于f(x)在[0,+∞)上是增函數(shù),,所以f(π)>f(3)>f(2),即f(-π)>f(3)>f(-2)。故選A。

考點:函數(shù)的性質

點評:判斷函數(shù)值的大小關系,主要是結合函數(shù)的單調性求解。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下面對命題“函數(shù)f(x)=x+
1
x
是奇函數(shù)”的證明不是綜合法的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)
;
②當x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點的橫坐標由小到大構成一個無窮等差數(shù)列;
④關于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-2ax+2a2-2(a≠0),g(x)=-ex-
1
ex
,則下列命題為真命題的是( 。
A、?x∈R,都有f(x)<g(x)
B、?x∈R,都有f(x)>g(x)
C、?x0∈R,使得f(x0)<g(x0
D、?x0∈R,使得f(x0)=g(x0

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆湖北武漢部分重點中學高二下學期期中考試理數(shù)學試卷(解析版) 題型:選擇題

若函數(shù)f(x)和g(x)的定義域、值域都是R,則不等式f(x)> g(x)有解的充要條件是( 。

A.$ x∈R, f(x)>g(x)                        B.有無窮多個x (x∈R ),使得f(x)>g(x)

C." x∈R,f(x)>g(x)                         D.{ x∈R| f(x)≤g(x)}=F

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下面對命題“函數(shù)f(x)=x+
1
x
是奇函數(shù)”的證明不是綜合法的是( 。
A.?x∈R且x≠0有f(-x)=(-x)+
1
-x
=-(x+
1
x
)=-f(x),∴f(x)是奇函數(shù)
B.?x∈R且x≠0有f(x)+f(-x)=x+
1
x
+(-x)+(-
1
x
)=0,∴f(x)=-f(-x),∴f(x)是奇函數(shù)
C.?x∈R且x≠0,∵f(x)≠0,∴
f(-x)
f(x)
=
-x-
1
x
x+
1
x
=-1,∴f(-x)=-f(x),∴f(x)是奇函數(shù)
D.取x=-1,f(-1)=-1+
1
-1
=-2,又f(1)=1+
1
1
=2

查看答案和解析>>

同步練習冊答案