【答案】
分析:(1)(i)先求出函數(shù)f(x)的導(dǎo)函數(shù)f′(x),然后將其配湊成f′(x)=h(x)(x
2-bx+1)這種形式,再說明h(x)對任意的x∈(1,+∞)都有h(x)>0,即可證明函數(shù)f(x)具有性質(zhì)P(b);
(2)根據(jù)第一問令φ(x)=x
2-bx+1,討論對稱軸與2的大小,當(dāng)b≤2時,對于x>1,φ(x)>0,所以f′(x)>0,可得f(x)在區(qū)間(1,+∞)上單調(diào)性,當(dāng)b>2時,φ(x)圖象開口向上,對稱軸 x=
>1,可求出方程φ(x)=0的兩根,判定兩根的范圍,從而確定φ(x)的符號,得到f′(x)的符號,最終求出單調(diào)區(qū)間.
(2)由題設(shè)知,函數(shù)g(x)得導(dǎo)數(shù)g′(x)=h(x)(x
2-2x+1),其中h(x)>0對于任意得x∈(1,+∞)都成立
當(dāng)x>1時,g′(x)=h(x)(x-1)
2>0,從而g(x)在(1,+∞)上單調(diào)遞增分①m∈(0,1)②m≤0③m≥1三種情況討論求解m得范圍即可
解答:解:(1)f′(x)=
-
=
∵x>1時,h(x)=
>0恒成立,
∴函數(shù)f(x)具有性質(zhì)P(b);
(ii)當(dāng)b≤2時,對于x>1,φ(x)=x
2-bx+1≥x
2-2x+1=(x-1)
2>0
所以f′(x)>0,故此時f(x)在區(qū)間(1,+∞)上遞增;
當(dāng)b>2時,φ(x)圖象開口向上,對稱軸 x=
>1,
方程φ(x)=0的兩根為:
而
,
∈(0,1)
當(dāng) x∈(1,
)時,φ(x)<0,f′(x)<0,
故此時f(x)在區(qū)間 (1,
)上遞減;
同理得:f(x)在區(qū)間[
,+∞)上遞增.
綜上所述,當(dāng)b≤2時,f(x)在區(qū)間(1,+∞)上遞增;
當(dāng)b>2時,f(x)在 (1,,
)上遞減;f(x)在[
,+∞)上遞增.
(2)由題設(shè)知,函數(shù)g(x)得導(dǎo)數(shù)g′(x)=h(x)(x
2-2x+1),其中h(x)>0對于任意得x∈(1,+∞)都成立
∴當(dāng)x>1時,g′(x)=h(x)(x-1)
2>0,從而g(x)在(1,+∞)上單調(diào)遞增
①m∈(0,1),α=mx
1+(1-m)x
2>mx
1+(1-m)x
1=x
1α<mx
2+(1-m)x
2=x
2
∴α∈(x
1,x
2)同理可得β∈(x
1,x
2)
由g(x)得單調(diào)性可知,g(α),g(β)∈(g(x
1),g(x
2))
從而有|g(α)-g(β)|≥|g(x
1)-g(x
2)|符合題意
②m≤0時,α=mx
1+(1-m)x
2≥mx
2+(1-m)x
2=x
2β=(1-m)x
1+mx
2≤(1-m)x
1+mx
1=mx
1于是由α>1,β>1及g(x)得單調(diào)性可知g(β)≤g(x
1)<g(x
2)≤g(α)
∴|g(α)-g(β)|≥|g(x
1)-g(x
2)|與題設(shè)不符
③m≥1時,同理可得α≤x
1,β≥x
2,進而可得|g(α)-g(β)|≥|g(x
1)-g(x
2)|與題設(shè)不符
綜合①②③可得m∈(0,1)
點評:本題主要考查函數(shù)的概念、性質(zhì)、圖象及導(dǎo)數(shù)等基礎(chǔ)知識,考查靈活運用數(shù)形結(jié)合、分類討論的思想方法進行探索、分析與解決問題的綜合能力.