已知:函數(shù)f(x)=x3-6x+5,x∈R,
(1)求:函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)若關(guān)于x的方程f(x)=a有3個(gè)不同實(shí)根,求:實(shí)數(shù)a的取值范圍;
(3)當(dāng)x∈(1,+∞)時(shí),f(x)≥k(x-1)恒成立,求:實(shí)數(shù)k的取值范圍.
分析:(1)先求函數(shù)的導(dǎo)數(shù),令導(dǎo)數(shù)等于0,求出極值點(diǎn),再列表判斷極值點(diǎn)左右兩側(cè)導(dǎo)數(shù)的正負(fù),當(dāng)左正右負(fù)時(shí)有極大值,當(dāng)左負(fù)右正時(shí)有極小值,且在某區(qū)間導(dǎo)數(shù)大于0時(shí),此區(qū)間為函數(shù)的增區(qū)間,在某區(qū)間導(dǎo)數(shù)小于0時(shí),此區(qū)間為函數(shù)的減區(qū)間.
(2)由(1)知函數(shù)f(x)的大致圖象,然后將關(guān)于x的方程f(x)=a有3個(gè)不同實(shí)根,轉(zhuǎn)化為y=f(x)圖象與直線y=a有3個(gè)不同交點(diǎn),數(shù)形結(jié)合解決問題
(3)先將f(x)≥k(x-1)恒成立,轉(zhuǎn)化為k≤x2+x-5在(1,+∞)上恒成立,進(jìn)而轉(zhuǎn)化為求函數(shù)g(x)=x2+x-5在(1,+∞)上的值域即可
解答:解:(1)求函數(shù)f(x)=x3-6x+5的導(dǎo)數(shù),得f'(x)=3(x2-2),
令f'(x)=0,即3(x2-2)=0,解得x1=-
2
,x2=
2
,
列表討論f′(x)的符號(hào),得
x (-∞,-
2
)
-
2
(-
2
,
2
)
2
(
2
,+∞)
f'(x) + 0 - 0 +
f(x) 極大值 極小值
∴f(x)的單調(diào)遞增區(qū)間是(-∞,-
2
)
(
2
,+∞)
,單調(diào)遞減區(qū)間是(-
2
,
2
)
,
當(dāng)x=-
2
時(shí),函數(shù)有極大值為5+4
2
,當(dāng)x=
2
時(shí),函數(shù)有極小值為5-4
2

(2)由(1)的分析可知y=f(x)圖象的大致形狀及走向如圖:
若關(guān)于x的方程f(x)=a有3個(gè)不同實(shí)根,即y=f(x)圖象與直線y=a有3個(gè)不同交點(diǎn),
由圖數(shù)形結(jié)合可得
5-4
2
<a<5+4
2

(3)f(x)≥k(x-1)即(x-1)(x2+x-5)≥k(x-1).
∵x>1,∴k≤x2+x-5在(1,+∞)上恒成立,
g(x)=x2+x-5=(x+
1
2
)2-
21
4
,則g(x)在(1,+∞)上是增函數(shù),
∴g(x)>g(1)=-3,
∴k≤-3.
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間和極值的方法,利用導(dǎo)數(shù)研究函數(shù)圖象解決根的個(gè)數(shù)問題的方法,不等式恒成立問題的解法
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)在(-∞,0)∪(0,+∞)上有意義,且在(0,+∞)上是減函數(shù),f(1)=0,又有函數(shù)g(θ)=sin2θ+mcosθ-2m,θ∈[0,
π2
],若集合M={m|g(θ)<0},集合N={m|f[g(θ)]>0}.
(1)解不等式f(x)>0;
(2)求M∩N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)的定義域?yàn)椋?1,1),當(dāng)x∈(0,1)時(shí),f(x)=
2x2x+1

(1)求f(x)在(-1,1)上的解析式;
(2)判斷f(x)在(0,1)上的單調(diào)性,并證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)f(x)=xa的圖象過點(diǎn)(
1
2
,
2
2
)
,則f(x)在(0,+∞)單調(diào)遞

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)在區(qū)間(a,b)上是減函數(shù),證明f(x)在區(qū)間(-b,-a)上仍是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:函數(shù)f(x)=x3-6x2+3x+t,t∈R.
(1)①證明:a3-b3=(a-b)(a2+ab+b2
②求函數(shù)f(x)兩個(gè)極值點(diǎn)所對(duì)應(yīng)的圖象上兩點(diǎn)之間的距離;
(2)設(shè)函數(shù)g(x)=exf(x)有三個(gè)不同的極值點(diǎn),求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案