已知函數(shù)f(x)滿足對任意的x∈R都有f(
1
2
+x)+f(
1
2
-x)=2
成立,則f(
1
8
)+f(
2
8
)+…+f(
7
8
)
=
 
分析:由題意得兩個式子相加可得[f(
1
8
)+f(
7
8
)]+[f(
2
8
)+f(
6
8
)]+…+[f(
7
8
)+f(
1
8
)]=2M
,因為f(
1
2
+x)+f(
1
2
-x)=2
所以f(
1
8
)+f(
2
8
)+…+f(
7
8
)
=7
解答:解:設(shè)f(
1
8
)+f(
2
8
)+…+f(
7
8
)=M
…①
所以f(
7
8
)+f(
6
8
)+…+f(
1
8
)=M
…②
①+②可得[f(
1
8
)+f(
7
8
)]+[f(
2
8
)+f(
6
8
)]+…+[f(
7
8
)+f(
1
8
)]=2M

因為函數(shù)f(x)滿足對任意的x∈R都有f(
1
2
+x)+f(
1
2
-x)=2
成立
所以14=2M即M=7
所以f(
1
8
)+f(
2
8
)+…+f(
7
8
)
=7
故答案為:7.
點評:本題考查了利用函數(shù)的對稱性求和,解決本題的關(guān)鍵是發(fā)現(xiàn)函數(shù)與和式的對稱性,利用倒敘相加法求和.此法在數(shù)列部分常見,也是一種求和的重要方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(x+y)=f(x)f(y),(x,y∈R)且f(1)=
1
2

(1)若n∈N*時,求f(n)的表達(dá)式;
(2)設(shè)bn=
nf(n+1)
f(n)
  (n∈N*)
,sn=b1+b2+…+bn,求
1
s1
+
1
s2
+…+
1
sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x) 滿足f(x+4)=x3+2,則f-1(1)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(x)+f'(0)-e-x=-1,函數(shù)g(x)=-λlnf(x)+sinx是區(qū)間[-1,1]上的減函數(shù).
(1)當(dāng)x≥0時,曲線y=f(x)在點M(t,f(t))的切線與x軸、y軸圍成的三角形面積為S(t),求S(t)的最大值;
(2)若g(x)<t2+λt+1在x∈[-1,1]時恒成立,求t的取值范圍;
(3)設(shè)函數(shù)h(x)=-lnf(x)-ln(x+m),常數(shù)m∈Z,且m>1,試判定函數(shù)h(x)在區(qū)間[e-m-m,e2m-m]內(nèi)的零點個數(shù),并作出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足:f(p+q)=f(p)f(q),f(1)=3,則
f2(1)+f(2)
f(1)
+
f2(2)+f(4)
f(3)
+
f2(3)+f(6)
f(5)
+
f2(4)+f(8)
f(7)
=
24.
24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•珠海二模)已知函數(shù)f(x)滿足:當(dāng)x≥1時,f(x)=f(x-1);當(dāng)x<1時,f(x)=2x,則f(log27)=(  )

查看答案和解析>>

同步練習(xí)冊答案