精英家教網 > 高中數學 > 題目詳情
設函數g(x)=x2-2(x∈R),f(x)=
g(x)+x+4,x<g(x)
g(x)-x,x≥g(x)
則f(x)的值域是______.
當x<g(x),即x<x2-2,(x-2)(x+1)>0時,x>2 或x<-1,
   f(x)=g(x)+x+4=x2-2+x+4=x2+x+2=(x+0.5)2+1.75,
∴其最小值為f(-1)=2
   其最大值為+∞,
因此這個區(qū)間的值域為:(2,+∞).
當x≥g(x)時,-1≤x≤2,
f(x)=g(x)-x=x2-2-x=(x-0.5)2-2.25
   其最小值為f(0.5)=-2.25
   其最大值為f(2)=0
   因此這區(qū)間的值域為:[-2.25,0].
綜合得:函數值域為:[-2.25,0]U(2,+∞)
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
x+1-a
a-x
(a∈R且x≠a).
(Ⅰ)求證:f(x)+f(2a-x)=-2對定義域內的所有x都成立;
(Ⅱ)當f(x)的定義域為[a+
1
2
,a+1]時,求證:f(x)的值域為[-3,-2];
(Ⅲ)設函數g(x)=x2+|(x-a)•f(x)|,當a=-1時,求g(x)的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
mxx2+n
(m,n∈R)
在x=1處取得極值2.
(Ⅰ)求函數f(x)的解析式;
(Ⅱ)若函數f(x)在區(qū)間(t,2t+1)上是單調函數,求實數t的取值范圍;
(Ⅲ)設函數g(x)=x2-2ax+a,若對于任意的x1∈R,總存在x2∈[-1,1],使得g(x2)≤f(x1),求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)是定義在R上的偶函數,且x≥0時,f(x)=(
1
2
)
x

(Ⅰ)求函數f(x)的值域A;
(Ⅱ)設函數g(x)=
-x2+(a-1)x+a
的定義域為集合B,若A⊆B,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•奉賢區(qū)一模)我們將具有下列性質的所有函數組成集合M:函數y=f(x)(x∈D),對任意x,y,
x+y
2
∈D
均滿足f(
x+y
2
)≥
1
2
[f(x)+f(y)]
,當且僅當x=y時等號成立.
(1)若定義在(0,+∞)上的函數f(x)∈M,試比較f(3)+f(5)與2f(4)大。
(2)設函數g(x)=-x2,求證:g(x)∈M.
(3)已知函數f(x)=log2x∈M.試利用此結論解決下列問題:若實數m、n滿足2m+2n=1,求m+n的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數:f(x)=
x+1-a
a-x
(a∈R且x≠a)

(1)證明:f(x)+2+f(2a-x)=0對定義域內的所有x都成立;
(2)當f(x)的定義域為[a+
1
2
,a+1]
時,求證:f(x)的值域為[-3,-2];
(3)(理)設函數g(x)=x2+|(x-a)f(x)|,求g(x)的最小值.
(4)(文)設函數g(x)=x2+(x-a)f(x),其中x≤a-1,求g(x)的最小值.

查看答案和解析>>

同步練習冊答案