2.已知冪函數(shù)f(x)=xα(α∈Z),具有如下性質(zhì):f2(1)+f2(-1)=2[f(1)+f(-1)-1],則f(x)是( 。
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.是非奇非偶函數(shù)

分析 欲正確作答,取常量n=2,驗證可得結(jié)論.

解答 解:冪函數(shù)f(x)=xα(α∈Z)中,
若有f2(1)+f2(-1)=2[f(1)+f(-1)-1],則可取常量n=2,
所以,函數(shù)為f(x)=x2,此函數(shù)的圖象是開口向上,并以y軸為對稱軸的二次函數(shù),
即定義域為R,關(guān)于原點對稱,且f(-x)=(-x)2=x2=f(x),所以為偶函數(shù).
故選:B.

點評 本題考查冪函數(shù),函數(shù)的奇偶性,考查學(xué)生的計算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.用一張正方形的包裝紙把一個棱長為1的正方體完全包住,要求不能將正方形紙撕開,則所需包裝紙的最小面積為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.己知直線l經(jīng)過定點(0,1),曲線C的方程是y2=4x,試討論直線l與C的交點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若集合A={x|log2x≤-2},則∁RA=( 。
A.$({\frac{1}{4},+∞})$B.$(-∞,0]∪({\frac{1}{4},+∞})$C.$(-∞,0]∪[{\frac{1}{4},+∞})$D.[$\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知△ABC三個頂點是A(3,3),B(-3,1),C(2,0).
(1)求AB邊中線CD所在直線方程;
(2)求AB邊的垂直平分線的方程;
(3)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列集合不是{1,2,3}的真子集的是( 。
A.{1}B.{2,3}C.D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知f(x)=x2-bx+c且f(1)=0,f(2)=-3
(1)求f(x)的函數(shù)解析式;
(2)求$f({\frac{1}{{\sqrt{x+1}}}})$的解析式及其定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)=\frac{{{2^x}+b}}{{{2^x}+a}}$,且$f(1)=\frac{1}{3}$,f(0)=0
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的值域;
(3)求證:方程f(x)=lnx至少有一根在區(qū)間(1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖所示,過圓柱的兩條母線AA1和BB1的截面A1 ABB1 的面積為S,母線AA1 的長為l,∠A1 O1 B1=90°,求此圓柱的體積.

查看答案和解析>>

同步練習(xí)冊答案