分析 (1)當(dāng)a1=1,d=2時(shí),根據(jù)等差數(shù)列的定義即可證明{$\sqrt{{S}_{n}}$}為等差數(shù)列;
(2)根據(jù)等差數(shù)列的定義以及充分條件和必要條件的定義進(jìn)行證明即可.
解答 證明:(1)當(dāng)a1=1,d=2時(shí),$\sqrt{{S}_{n}}$=$\sqrt{{n}^{2}}=n$----------------------(2分)
則$\sqrt{{S}_{n+1}}$-$\sqrt{{S}_{n}}$=n+1-n=1(常數(shù))
∴{$\sqrt{{S}_{n}}$}為等差數(shù)列----------------------(4分)
(2)①充分性:若d=2a1,則$\sqrt{{S}_{n}}$=$\sqrt{{n}^{2}{a}_{1}}$=$n\sqrt{{a}_{1}}$----------------------(6分)
$\sqrt{{S}_{n+1}}$-$\sqrt{{S}_{n}}$=(n+1)$\sqrt{{a}_{1}}$-n$\sqrt{{a}_{1}}$=$\sqrt{{a}_{1}}$(常數(shù))
∴{$\sqrt{{S}_{n}}$}為等差數(shù)列----------------------(8分)
②必要性:若{$\sqrt{{S}_{n}}$}為等差數(shù)列,則2$\sqrt{{S}_{2}}=\sqrt{{S}_{1}}+\sqrt{{S}_{3}}$,
即2$\sqrt{2{a}_{1}+d}=\sqrt{{a}_{1}}+\sqrt{3{a}_{1}+3d}$----------------------(10分)
兩邊平方,整理得$4{a}_{1}+d=2\sqrt{{a}_{1}(3{a}_{1}+3d)}$,
兩邊再平方,整理得4a12-4a1d+d2=0,
即(2a1-d)2=0,
∴2a1-d=0,d=2a1----------------------(15分)
綜上,數(shù)列{$\sqrt{{S}_{n}}$}為等差數(shù)列的充要條件是d=2a1----------------------(16分)
點(diǎn)評(píng) 本題主要考查等差數(shù)列的定義以及充分條件和必要條件的應(yīng)用,利用定義法是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | 3 | C. | -1 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{1}{4}$ | C. | $\frac{4}{5}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等腰直角三角形 | B. | 等腰或直角三角形 | ||
C. | 等腰三角形 | D. | 直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 焦點(diǎn)在x軸上的橢圓 | B. | 焦點(diǎn)在y軸上的橢圓 | ||
C. | 焦點(diǎn)在x軸上的雙曲線 | D. | 表示焦點(diǎn)在y軸上的雙曲線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | 4 | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com