雙曲線的左右焦點為F1,F2,過點F2的直線l與右支交于點P,Q,若|PF1|=|PQ|,則|PF2|的值為(     )
A.4B.6C.8D.10
B
解:因為雙曲線的左右焦點為F1,F2,過點F2的直線l與右支交于點P,Q,若|PF1|=|PQ|,利用雙曲線的定義,以及直線與雙曲線聯(lián)立方程組得到弦長,得到|PF2|的值為6選B
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分)求雙曲線的焦點坐標,離心率和漸近線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線的右焦點為,過且斜率為的直線交兩點,若,則的離心率為  (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線的左、右焦點分別為,點在其右支上,且滿足,則的值是(  )
A.B.C.4024D.4015

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線的漸近線與拋物線相切,則該雙曲線的離心率為
A.B.2C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)為雙曲線>0,b>0)的焦點,分別為雙曲線的左右頂點,以為直徑的圓與雙曲線的漸近線在第一象限的交點為,且滿足 ,則該雙曲線的離心率為
A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓長軸上有一頂點到兩個焦點之間的距離分別為:3+2,3-2.
(1)求橢圓的方程;
(2)如果直線 與橢圓相交于A,B,若C(-3,0),D(3,0),證明:直線CA與直線BD的交點K必在一條確定的雙曲線上;
(3)過點Q(1,0 )作直線l (與x軸不垂直)與橢圓交于M,N兩點,與y軸交于點R,若,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線有一個焦點與拋物線的焦點重合,則雙曲線的漸近線方程為
A.y=B.y=C.y=D.y=

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知是雙曲線的兩個焦點,點是雙曲線上的點,并且,則的面積為____.

查看答案和解析>>

同步練習冊答案