正三棱柱ABC-A1B1C1的所有棱長均為2,P是側(cè)棱AA1上任意一點(diǎn).
(Ⅰ)求證:直線B1P不可能與平面ACC1A1垂直;
(Ⅱ)當(dāng)BC1⊥B1P時(shí),求二面角C-B1P-C1的余弦值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:044
【注意:本題的要求是,參照標(biāo)①的寫法,在標(biāo)號(hào)②、③、④、⑤的橫線上填寫適當(dāng)步驟,完成(Ⅰ)證明的全過程;并解答(Ⅱ).】
如圖:在正三棱柱ABC-A1 B1 C1中,AB==a,E,F分別是BB1,CC1上的點(diǎn)且BE=a,CF=2a.
(Ⅰ)求證:面AEF⊥面ACF;
(Ⅱ)求三棱錐A1-AEF的體積.
(Ⅰ)證明:
①∵ BE=a,CF=2a,BE∥CF,延長FE與CB延長線交于D,連結(jié)AD.
∴ △DBE∽△DCF
∴
②_____________________
∴ DB=AB.
③______________________
∴ DA⊥AC
④_______________________
∴ FA⊥AD
⑤_________________________
∴ 面AEF⊥面ACF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044
【注意:本題的要求是,參照標(biāo)①的寫法,在標(biāo)號(hào)②、③、④、⑤的橫線上填寫適當(dāng)步驟,完成(Ⅰ)證明的全過程;并解答(Ⅱ).】
如圖:在正三棱柱ABC-A1 B1 C1中,AB==a,E,F分別是BB1,CC1上的點(diǎn)且BE=a,CF=2a.
(Ⅰ)求證:面AEF⊥面ACF;
(Ⅱ)求三棱錐A1-AEF的體積.
(Ⅰ)證明:
①∵ BE=a,CF=2a,BE∥CF,延長FE與CB延長線交于D,連結(jié)AD.
∴ △DBE∽△
∴
②_____________________
∴ DB=AB.
③______________________
∴ DA⊥AC
④_______________________
∴ FA⊥AD
⑤_________________________
∴ 面AEF⊥面ACF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009年高考數(shù)學(xué)文科(湖南卷) 題型:044
如圖
3,在正三棱柱ABC-A1,B1,C1中,AB=4,AA1=,點(diǎn)D是BC的中點(diǎn),點(diǎn)E在AC上,且DE⊥A1E(Ⅰ)證明:平面A1DE⊥平面ACC1A1;
(Ⅱ)求直線AD和平面A1DE所成角的正弦值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com