已知函數(shù)f(x)的定義域?yàn)閇0,1],且同時(shí)滿足:(Ⅰ)對(duì)任意x∈[0,1],總有f(x)≥3;(Ⅱ)f(1)=4;(Ⅲ)若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)-3
(1)試求f(0)的值;
(2)試求函數(shù)f(x)的最大值;
(3)試證明:當(dāng)x∈(
13
,1]
時(shí),f(x)<3x+3.
分析:(1)令x1=x2=0可得,f(0)≤3,結(jié)合已知可知f(0)≥3,從而可求f(0)
(2)任取x1<x2∈[0,1],則f(x2)=f[x1+(x2-x1)]≥f(x1)+f(x2-x1)-3,則可得f(x)≤f(1),從而可求函數(shù)的最大值
(3)由已知可證,x∈(
1
3
,1]
時(shí),f(x)≤f(1)=4,3x+3>4,可證
解答:解:(1)令x1=x2=0可得,f(0)≥2f(0)-3
∴f(0)≤3
∵對(duì)任意x∈[0,1],總有f(x)≥3
∴f(0)≥3
∴f(0)=3
(2)任取x1<x2∈[0,1]
則f(x2)=f[x1+(x2-x1)]≥f(x1)+f(x2-x1)-3
由x2-x1>0可得f(x2-x1)≥3
∴當(dāng)x∈[0,1]時(shí),f(x)≤f(1)=4
∴函數(shù)的最大值為4
(3)證明:當(dāng)x∈(
1
3
,1]
時(shí),f(x)≤f(1)=4=1+3
x∈(
1
3
,1]
時(shí),3x+3>3×
1
3
+3=4
∴f(x)<3x+3
點(diǎn)評(píng):本題主要考查了抽象函數(shù)利用賦值法求解函數(shù)的函數(shù)值,及利用構(gòu)造法證明函數(shù)的單調(diào)性及由函數(shù)的單調(diào)性解不等式等知識(shí)的綜合應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2y2)
是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P滿足2
OP
=
OM
+
ON
(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn;
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對(duì)一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的有( 。﹤(gè).
①已知函數(shù)f(x)在(a,b)內(nèi)可導(dǎo),若f(x)在(a,b)內(nèi)單調(diào)遞增,則對(duì)任意的?x∈(a,b),有f′(x)>0.
②函數(shù)f(x)圖象在點(diǎn)P處的切線存在,則函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在;反之若函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在,則函數(shù)f(x)圖象在點(diǎn)P處的切線存在.
③因?yàn)?>2,所以3+i>2+i,其中i為虛數(shù)單位.
④定積分定義可以分為:分割、近似代替、求和、取極限四步,對(duì)求和In=
n
i=1
f(ξi)△x
中ξi的選取是任意的,且In僅于n有關(guān).
⑤已知2i-3是方程2x2+px+q=0的一個(gè)根,則實(shí)數(shù)p,q的值分別是12,26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個(gè)相鄰函數(shù)的交點(diǎn)為A,B,若m變化時(shí),AB的長(zhǎng)度是一個(gè)定值,則AB的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)已知函數(shù)f(x)=x3-x,其圖象記為曲線C.
(i)求函數(shù)f(x)的單調(diào)區(qū)間;
(ii)證明:若對(duì)于任意非零實(shí)數(shù)x1,曲線C與其在點(diǎn)P1(x1,f(x1))處的切線交于另一點(diǎn)P2(x2,f(x2)),曲線C與其在點(diǎn)P2(x2,f(x2))處的切線交于另一點(diǎn)P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積記為S1,S2.則
S1S2
為定值;
(Ⅱ)對(duì)于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請(qǐng)給出類似于(Ⅰ)(ii)的正確命題,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-ax+b存在極值點(diǎn).
(1)求a的取值范圍;
(2)過(guò)曲線y=f(x)外的點(diǎn)P(1,0)作曲線y=f(x)的切線,所作切線恰有兩條,切點(diǎn)分別為A、B.
(。┳C明:a=b;
(ⅱ)請(qǐng)問(wèn)△PAB的面積是否為定值?若是,求此定值;若不是求出面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案