【題目】已知函數(shù)

討論函數(shù)的單調(diào)性;

設(shè),對(duì)任意的恒成立,求整數(shù)的最大值;

求證:當(dāng)時(shí),

【答案】(1)當(dāng)時(shí),函數(shù)上單調(diào)遞增;當(dāng)時(shí),上單調(diào)遞增,在上單調(diào)遞減;(2;(3)證明見解析.

【解析】

(1)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;

(2)若a≤0,則f(1)=﹣a+1>0,不滿足fx)≤0恒成立.若a>0,由(Ⅰ)可知,函數(shù)fx)在(0,)上單調(diào)遞增;在()上單調(diào)遞減.由此求出函數(shù)的最大值,由最大值小于等于0可得實(shí)數(shù)a的取值范圍.

(3)由(2)可知,當(dāng)a=1時(shí),fx)≤0恒成立,即lnxx+1≤0.得到﹣xlnx≥﹣x2+x,則exxlnx+x﹣1≥exx2+2x﹣1.然后利用導(dǎo)數(shù)證明exx2+2x﹣1>0(x>0),即可說明exxlnx+x>0.

(1)∵函數(shù) fx)=a∈R ).

x>0,

當(dāng)a=0時(shí),f′(x0,fx)在(0,+∞)單調(diào)遞增.

當(dāng)a>0時(shí),f′(x)>0,fx)在(0,+∞)單調(diào)遞增.

當(dāng)a<0時(shí),令f′(x)>0,解得:0<x,

f′(x)<0,解得:x,

fx)在(0,)遞增,在(,+∞)遞減.

(2)當(dāng)時(shí),則f(1)=2a+3>0,不滿足fx)≤0恒成立.

a<0,由(1)可知,函數(shù)fx)在(0,)遞增,在(,+∞)遞減.

,又fx)≤0恒成立,

fxmax≤0,即0,令g(a)=,則g(a)單調(diào)遞增,g(-1)=1,

g(-2)=<0,∴a時(shí),g(a) <0恒成立,此時(shí)fx)≤0恒成立,

∴整數(shù)的最大值-2.

(3)由(2)可知,當(dāng)a=-2時(shí),fx)≤0恒成立,即lnx﹣2x2+1≤0.即xlnx﹣2x3+x≤0,恒成立,①

exx2+2x﹣1+(

∴只需證exx2+2x﹣1,

gx)=exx2+2x﹣1(x>0),則g′(x)=ex﹣2x+2,

hx)=ex﹣2x+2,則h′(x)=ex﹣2,由h′(x)=0,得xln2.

當(dāng)x∈(0,ln2)時(shí),h′(x)<0;當(dāng)x∈(ln2,+∞)時(shí),h′(x)>0.

∴函數(shù)hx)在(0,ln2)上單調(diào)遞減;在(ln2,+∞)上單調(diào)遞增.

4﹣2ln2>0.

hx)>0,即g′(x)>0,故函數(shù)gx)在(0,+∞)上單調(diào)遞增.

gx)>g(0)=e0﹣1=0,即exx2+2x﹣1>0.

結(jié)合①∴exx2+2x﹣1+()>0,即>0成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為全面推進(jìn)新課程改革,在高一年級(jí)開設(shè)了研究性學(xué)習(xí)課程,某班學(xué)生在一次研究活動(dòng)課程中,一個(gè)小組進(jìn)行一種驗(yàn)證性實(shí)驗(yàn),已知該種實(shí)驗(yàn)每次實(shí)驗(yàn)成功的概率為

求該小組做了5次這種實(shí)驗(yàn)至少有2次成功的概率.

如果在若干次實(shí)驗(yàn)中累計(jì)有兩次成功就停止實(shí)驗(yàn),否則將繼續(xù)下次實(shí)驗(yàn),但實(shí)驗(yàn)的總次數(shù)不超過5次,求該小組所做實(shí)驗(yàn)的次數(shù)的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若圓經(jīng)過坐標(biāo)原點(diǎn)和點(diǎn),且與直線相切, 從圓外一點(diǎn)向該圓引切線,為切點(diǎn),

)求圓的方程;

)已知點(diǎn),且, 試判斷點(diǎn)是否總在某一定直線上,若是,求出的方程;若不是,請(qǐng)說明理由;

)若()中直線軸的交點(diǎn)為,點(diǎn)是直線上兩動(dòng)點(diǎn),且以為直徑的圓過點(diǎn),圓是否過定點(diǎn)?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知點(diǎn)A(2,0)B(2,0),動(dòng)點(diǎn)M(x,y)滿足直線AMBM的斜率之積為.M的軌跡為曲線C.

1)求C的方程,并說明C是什么曲線;

2)過坐標(biāo)原點(diǎn)的直線交CP,Q兩點(diǎn),點(diǎn)P在第一象限,PEx軸,垂足為E,連結(jié)QE并延長(zhǎng)交C于點(diǎn)G.

i)證明:是直角三角形;

ii)求面積的最大值.

(二)選考題:共10請(qǐng)考生在第2223題中任選一題作答。如果多做,則按所做的第一題計(jì)分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】邊長(zhǎng)為的等邊三角形內(nèi)任一點(diǎn)到三邊距離之和為定值,這個(gè)定值等于;將這個(gè)結(jié)論推廣到空間是:棱長(zhǎng)為的正四面體內(nèi)任一點(diǎn)到各面距離之和等于________________.(具體數(shù)值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為菱形,ACEF為平行四邊形,且平面ACEF⊥平面ABCD,設(shè)BDAC相交于點(diǎn)G,HFG的中點(diǎn).

(1)證明:BDCH;

(2)若AB=BD=2,AE=,CH=,求三棱錐F-BDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)有關(guān)于的一元二次方程

)若是從四個(gè)數(shù)中任取的一個(gè)數(shù),是從三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.

)若是從區(qū)間任取的一個(gè)數(shù),是從區(qū)間任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在棱錐中,為矩形,,

(1)在上是否存在一點(diǎn),使,若存在確定點(diǎn)位置,若不存在,請(qǐng)說明理由;

(2)當(dāng)中點(diǎn)時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若,求證: .

查看答案和解析>>

同步練習(xí)冊(cè)答案