【題目】設(shè)函數(shù),,已知曲線在點處的切線與直線垂直.
(1)求的值;
(2)若對任意,都有,求的取值范圍.
【答案】(1);(2).
【解析】
試題分析:(1)求導(dǎo),利用導(dǎo)數(shù)的幾何意義和兩條直線垂直的判定進(jìn)行求解;(2)求導(dǎo),確定導(dǎo)函數(shù)的不同零點,討論兩個零點的大小關(guān)系,確定函數(shù)的單調(diào)性和最值,再解關(guān)于的不等式即可求解.
試題解析:(1)曲線在點處的切線斜率為2,所以,
又,即,所以.
(2)的定義域為,
,
①若,則,故當(dāng)時,,在上單調(diào)遞增.
所以,對任意,都有的充要條件為,即,
解得或.
②若,則,故當(dāng)時,;當(dāng)時,
,在上單調(diào)遞減,在上單調(diào)遞增.
所以,對任意,都有的充要條件為,
而在上恒成立,
所以.
③若,在上遞減,不合題意.
綜上,的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù) 的極值;
(2)若在內(nèi)為單調(diào)增函數(shù),求實數(shù)的取值范圍;
(3)對于,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等式:sin25°+cos235°+sin 5°cos 35°= ,
sin215°+cos245°+sin 15°cos 45°=,sin230°+cos260°+sin 30°·cos 60°=,…,由此歸納出對任意角度θ都成立的一個等式,并予以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),其中,曲線在點處的切線與軸相交于點.
(1)確定的值;
(2)求函數(shù)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.
(1)若BA,求實數(shù)m的取值范圍;
(2)當(dāng)x∈R時,不存在元素x使x∈A與x∈B同時成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log2(1-x),g(x)=log2(x+1),設(shè)F(x)=f(x)-g(x).
(1)判斷函數(shù)F(x)的奇偶性;
(2)證明函數(shù)F(x)是減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,海上有、兩個小島相距,船將保持觀望島和島所成的視角為,現(xiàn)從船上派下一只小艇沿方向駛至處進(jìn)行作業(yè),且.設(shè).
(1)用分別表示和,并求出的取值范圍;
(2)0晚上小艇在處發(fā)出一道強(qiáng)烈的光線照射島,島至光線的距離為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解大學(xué)生觀看浙江衛(wèi)視綜藝節(jié)目“奔跑吧兄弟”是否與性別有關(guān),一所大學(xué)心理學(xué)教師從該校學(xué)生中隨機(jī)抽取了50人進(jìn)行問卷調(diào)查,得到了如下的列聯(lián)表:
喜歡看“奔跑吧兄弟” | 不喜歡看“奔跑吧兄弟” | 合計 | |
女生 | 5 | ||
男生 | 10 | ||
合計 | 50 |
若該教師采用分層抽樣的方法從50份問卷調(diào)查中繼續(xù)抽查了10份進(jìn)行重點分析,知道其中喜歡看“奔跑吧兄弟”的有6人.
(1)請將上面的列聯(lián)表補充完整;
(2)是否有的把握認(rèn)為喜歡看“奔跑吧兄弟”節(jié)目與性別有關(guān)?說明你的理由;
(3)已知喜歡看“奔跑吧兄弟”的10位男生中,還喜歡看新聞,還喜歡看動畫片,還喜歡看韓劇,現(xiàn)再從喜歡看新聞、動畫片和韓劇的男生中各選出1名進(jìn)行其他方面的調(diào)查,求和不全被選中的概率.
下面的臨界值表供參考:
P(χ2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com