15.經(jīng)過雙曲線上任一點M作平行于實軸的直線,與漸近線交于P、Q兩點,則|MP|•|MQ|為定值,其值為(  )
A.a2B.b2C.c2D.ab

分析 先設(shè)出點M的坐標(biāo),根據(jù)點M在雙曲線上,得到${x}^{2}={a}^{2}(1+\frac{{y}^{2}}{^{2}})$;再根據(jù)條件求出P,Q兩點的坐標(biāo),代入|MP|•|MQ|整理即可求出結(jié)論.

解答 解:經(jīng)過雙曲線上任一點M作平行于實軸的直線,與漸近線交于P、Q兩點,
設(shè)M(x,y),則有:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$⇒${x}^{2}={a}^{2}(1+\frac{{y}^{2}}{^{2}})$①
且P(-$\frac{a}$y,y),Q($\frac{a}$y,y),
∴$\overrightarrow{MP}$=(-$\frac{a}$y-x,0),$\overrightarrow{MQ}$=($\frac{a}$y-x,0)
∴|MP|•|MQ|=$|\overrightarrow{MP}|•|\overrightarrow{MQ}|$=(-$\frac{a}$y-x)•($\frac{a}$y-x)+0=x2-$\frac{{a}^{2}}{^{2}}$y2=${a}^{2}(1+\frac{{y}^{2}}{^{2}})$-$\frac{{a}^{2}}{^{2}}$y2=a2
故選:A.

點評 本題主要考查雙曲線的基本性質(zhì)以及向量的數(shù)量積,突出了對計算能力和綜合運用知識能力的考查,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列函數(shù)中,既是偶函數(shù),又在(0,+∞)單調(diào)遞增的函數(shù)是( 。
A.y=|lgx|B.y=2-|x|C.y=|$\frac{1}{x}$|D.y=lg|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.復(fù)數(shù)z=4i2016-$\frac{5i}{1+2i}$(其中i為虛數(shù)單位)對應(yīng)點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C的兩焦點分別為F1(-2$\sqrt{2}$,0),F(xiàn)2(2$\sqrt{2}$,0),長軸長為6.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知過點(0,2)且斜率為1的直線交橢圓C與A、B兩點,求線段AB的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>b>0)的漸近線和圓x2+y2-6y+8=0相切,則該雙曲線的離心率等于(  )
A.$\sqrt{2}$B.2C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)集合M={(x,y)|F(x,y)=0}為平面直角坐標(biāo)系xoy內(nèi)的點集,若對于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2<0,則稱點集M滿足性質(zhì)P.
給出下列四個點集:
①R={(x,y)|sinx-y+1=0}
②S={(x,y)|lnx-y=0}
③T={(x,y)|x2+y2-1=0}
④W={(x,y)|xy-1=0}
其中所有滿足性質(zhì) P 的點集的序號是③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.給出下列命題:
①命題“同位角相等,兩直線平行”的否命題為:“同位角不相等,兩直線不平行,”.
②“x≠1”是“x2-4x+3≠0”的必要不充分條件.
③“p或q是假命題”是“¬p為真命題”的充分不必要條件.
④對于命題p:?x∈R,使得x2+2x+2≤0,則¬p:x∉R均有x2+2x+2>0
其中真命題的序號為①②③(把所有正確命題的序號都填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列命題錯誤的是( 。
A.命題“若x2<1,則-1<x<1”的逆否命題是“若x≥1或x≤-1,則x2≥1”
B.“am2<bm2”是“a<b”的充分不必要條件
C.命題“p或q”為真命題,則命題“p”和命題“q”均為真命題
D.命題p:存在x0∈R,使得${{x}_{0}}^{2}$+x0+1<0,則¬p:任意x∈R,都有x2+x+1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.從集合A到集合B的映射f:x→x2+1,若A={-2,-1,0,1,2},則B中至少有3個元素.

查看答案和解析>>

同步練習(xí)冊答案