【題目】已知焦距為2的橢圓W ab0)的左、右焦點分別為A1,A2,上、下頂點分別為B1,B2,點Mx0,y0)為橢圓W上不在坐標軸上的任意一點,且四條直線MA1,MA2MB1,MB2的斜率之積為

1)求橢圓W的標準方程;

2)如圖所示,點A,D是橢圓W上兩點,點A與點B關(guān)于原點對稱,ADAB,點Cx軸上,且ACx軸垂直,求證:B,CD三點共線.

【答案】(1);(2)見解析.

【解析】試題分析:(1)根據(jù)橢圓的定義和性質(zhì),建立方程求出a,b即可.

2)聯(lián)立直線和橢圓方程,利用消元法結(jié)合設(shè)而不求的思想進行求解即可.

試題解析:

1)由題意可知:2c=2c=1,a2-b2=1

Mx0,y0)為橢圓W上不在坐標軸上的任意一點,

=a2-),=b2-),

==

==2=,則a2=2b2,

a2=2,b2=1

橢圓W的標準方程;

2)證明:不妨設(shè)點Ax1,1),Dx2,y2),B的坐標(-x1,-y1),Cx1,0),

A,D在橢圓上,,=0,即(x1-x2)(x1+x2+2y1-y2)(y1+y2=0,

=-,

ADAB,

kADkAB=-1=-1,-,)=-1,

=,

kBD-kBC=-=-=0,

kBD=kBC

B,C,D三點共線.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)有小學21所,中學14所大學7所,現(xiàn)采用分層抽樣的方法從這些學校中抽取6所學校對學生進行視力調(diào)查

求應(yīng)從小學、中學、大學中分別抽取的學校數(shù)目

若從抽取的6所學校中隨機抽取2所學校做進一步數(shù)據(jù)分析,

(1)列出所有可能的抽取結(jié)果

(2)求抽取的2所學校均為小學的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)f1(x)、f2(x)、h(x),如果存在實數(shù)a,b使得h(x)=af1(x)+bf2(x),那么稱h(x)為f1(x)、f2(x)的和諧函數(shù).
(1)已知函數(shù)f1(x)=x﹣1,f2(x)=3x+1,h(x)=2x+2,試判斷h(x)是否為f1(x)、f2(x)的和諧函數(shù)?并說明理由;
(2)已知h(x)為函數(shù)f1(x)=log3x,f2(x)=log x的和諧函數(shù),其中a=2,b=1,若方程h(9x)+th(3x)=0在x∈[3,9]上有解,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,定義橢圓上的點的“伴隨點”為.

(1)求橢圓上的點的“伴隨點”的軌跡方程;

(2)如果橢圓上的點的“伴隨點”為,對于橢圓上的任意點及它的“伴隨點”,求的取值范圍;

(3)當 時,直線交橢圓, 兩點,若點, 的“伴隨點”分別是, ,且以為直徑的圓經(jīng)過坐標原點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}為等差數(shù)列,前n項和為SnnN*),{bn}是首項為2的等比數(shù)列,且公比大于0b2+b3=12,b3=a4-2a1,S11=11b4

)求{an}{bn}的通項公式;

)求數(shù)列{a2nbn}的前n項和(nN*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱ABC-A1B1Cl中,M,N分別為CC1,A1B1的中點.

(I)證明:直線MN//平面CAB1;

(II)BA=BC=BB1,CA=CB1,CA⊥CB1,∠ABB1=60°,求平面AB1C和平面A1B1C1所成的角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠家擬在2017年舉行促銷活動,經(jīng)調(diào)查測算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)(單位:萬件)與年促銷費用(單位:萬元)()滿足 為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是1萬件.已知2017年生產(chǎn)該產(chǎn)品的固定投入為8萬元.每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).

(1)將2017年該產(chǎn)品的利潤(單位:萬元)表示為年促銷費用(單位:萬元)的函數(shù);

(2)該廠家2017年的促銷費用投入多少萬元時,廠家的利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知⊙ 與⊙ ,以, 分別為左右焦點的橢圓 經(jīng)過兩圓的交點。

(Ⅰ)求橢圓的方程;

(Ⅱ)、是橢圓上的兩點,若直線的斜率之積為,試問的面積是否為定值?若是,求出這個定值;若不是,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知冪函數(shù)f(x)=(﹣2m2+m+2)xm+1為偶函數(shù).
(1)求f(x)的解析式;
(2)若函數(shù)y=f(x)﹣2(a﹣1)x+1在區(qū)間(2,3)上為單調(diào)函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案