已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)如果對(duì)于任意的,總成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)是否存在正實(shí)數(shù),使得:當(dāng)時(shí),不等式恒成立?請(qǐng)給出結(jié)論并說(shuō)明理由.
(Ⅰ);(Ⅱ);(Ⅲ)存在,.

試題分析:(Ⅰ)先求,利用輔助角公式,函數(shù)的性質(zhì)求得;(Ⅱ)構(gòu)造新函數(shù),用導(dǎo)數(shù)法求解,需要對(duì)進(jìn)行分類討論;(Ⅲ)探索性問(wèn)題,構(gòu)造新函數(shù),用導(dǎo)數(shù)法解題.
試題解析:(Ⅰ)由于,
所以.       (2分)
當(dāng),即時(shí),;
當(dāng),即時(shí),.
所以的單調(diào)遞增區(qū)間為,
單調(diào)遞減區(qū)間為.                         (4分)
(Ⅱ)令,要使總成立,只需時(shí).
對(duì)求導(dǎo)得,
,則,()
所以上為增函數(shù),所以.                       (6分)
對(duì)分類討論:
① 當(dāng)時(shí),恒成立,所以上為增函數(shù),
所以,即恒成立;
② 當(dāng)時(shí),在上有實(shí)根,因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824022756441484.png" style="vertical-align:middle;" />在上為增函數(shù),
所以當(dāng)時(shí),,所以,不符合題意;
③ 當(dāng)時(shí),恒成立,所以上為減函數(shù),則,不符合題意.
綜合①②③可得,所求的實(shí)數(shù)的取值范圍是.                    (9分)
(Ⅲ)存在正實(shí)數(shù)使得當(dāng)時(shí),不等式恒成立.
理由如下:令,要使上恒成立,只需.                                                                        (10分)
因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824022757003999.png" style="vertical-align:middle;" />,且,
所以存在正實(shí)數(shù),使得
當(dāng)時(shí),,上單調(diào)遞減,即當(dāng)時(shí),,
所以只需均滿足:當(dāng)時(shí),恒成立.    (14分)
注:因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824022757221722.png" style="vertical-align:middle;" />,,所以的性質(zhì),恒成立問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知是關(guān)于的方程的兩個(gè)根,且.
(1)求出之間滿足的關(guān)系式;
(2)記,若存在,使不等式在其定義域范圍內(nèi)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在一般情況下,大橋上的車流速度(單位:千米/小時(shí))是車流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到輛/千米時(shí),造成堵塞,此時(shí)車流速度為;當(dāng)時(shí),車流速度為千米/小時(shí).研究表明:當(dāng)時(shí),車流速度是車流密度的一次函數(shù).
(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(2)當(dāng)車流密度為多大時(shí),車流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)已知函數(shù))在區(qū)間上有最大值和最小值.設(shè)
(1)求、的值;
(2)若不等式上有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若關(guān)于的方程有四個(gè)不同的實(shí)數(shù)解,則的取值范圍為         (  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

定義在R上的函數(shù)滿足,,則方程在區(qū)間上的所有實(shí)根之和最接近下列哪個(gè)數(shù)(   )
A. 10B. 8C. 7D. 6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知,其中、為常數(shù),且,若為常數(shù),則的值為     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

直線是函數(shù)的切線,則實(shí)數(shù)           

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知,則___________.

查看答案和解析>>

同步練習(xí)冊(cè)答案