已知數(shù)學(xué)公式=(1,2,-1),數(shù)學(xué)公式=(x,y,2),且數(shù)學(xué)公式數(shù)學(xué)公式,那么x+y=________.

-6
分析:由已知中=(1,2,-1),=(x,y,2),且,根據(jù)向量平行(共線(xiàn))的充要條件,我們可得存在λ∈R,使,構(gòu)造方程組求出λ,x,y后,即可求出答案.
解答:∵=(1,2,-1),=(x,y,2),
又∵,
則存在λ∈R,使
即(1,2,-1)=λ(x,y,2),

解得λ=-
∴x=-2,y=-4
∴x+y=-6
故答案為:-6.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是共線(xiàn)向量,其中根據(jù)向量平行(共線(xiàn))的充要條件,得到存在λ∈R,使,構(gòu)造方程組是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且對(duì)任何m,n∈N*,都有:①f(m,n+1)=f(m,n)+2,②f(m+1,1)=2f(m,1),給出以下三個(gè)結(jié)論:
(1)f(1,5)=9;(2)f(5,1)=16; (3)f(5,6)=26,其中正確結(jié)論的序號(hào)為
(1)(2)(3)
(1)(2)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且對(duì)任何m,n∈N*,都有:①f(m,n+1)=f(m,n)+2,②f(m+1,1)=2f(m,1),給出以下三個(gè)結(jié)論:
(1)f(1,5)=9;(2)f(5,1)=18; (3)f(5,6)=26,其中正確結(jié)論的序號(hào)為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河北省衡水中學(xué)高二(上)第一次調(diào)研數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且對(duì)任何m,n∈N*,都有:①f(m,n+1)=f(m,n)+2,②f(m+1,1)=2f(m,1),給出以下三個(gè)結(jié)論:
(1)f(1,5)=9;(2)f(5,1)=18; (3)f(5,6)=26,其中正確結(jié)論的序號(hào)為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省臨沂一中高二(上)10月月考數(shù)學(xué)試卷(解析版) 題型:填空題

已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且對(duì)任何m,n∈N*,都有:①f(m,n+1)=f(m,n)+2,②f(m+1,1)=2f(m,1),給出以下三個(gè)結(jié)論:
(1)f(1,5)=9;(2)f(5,1)=18; (3)f(5,6)=26,其中正確結(jié)論的序號(hào)為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖南省郴州市汝城一中高二(上)第三次月考數(shù)學(xué)試卷A(解析版) 題型:填空題

已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且對(duì)任何m,n∈N*,都有:①f(m,n+1)=f(m,n)+2,②f(m+1,1)=2f(m,1),給出以下三個(gè)結(jié)論:
(1)f(1,5)=9;(2)f(5,1)=18; (3)f(5,6)=26,其中正確結(jié)論的序號(hào)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案