設(shè)直線l1與曲線y=相切于P,直線l2P且垂直于l1,若l2x軸于Q點(diǎn),又作PK垂直于x軸于K點(diǎn),求KQ的長.

分析:先確定直線l2的斜率,再寫出l2的方程.

解:設(shè)P(x0,y0),則

由于l2l1垂直,故

于是l2:y-y0=-2(x-x0).

y=0,則-y0=-2(xQ-x0),即-=-2(xQ-x0),

解得xQ=+x0.易見xK=x0,

于是|KQ|=|xQ-xK|=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:選修設(shè)計(jì)同步數(shù)學(xué)人教A(2-2) 人教版 題型:044

設(shè)直線l1與曲線y相切于P,直線l2P且垂直于l1,若l2x軸于Q點(diǎn),又作PK垂直于x軸于K點(diǎn),求KQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l1與曲線y=相切于P,直線l2P且垂直于l1,若l2x軸于Q點(diǎn),又作PK垂直于x軸于K,求KQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l1與曲線y=相切于點(diǎn)P,直線l2過點(diǎn)P且垂直于l1.若l2交x軸于Q點(diǎn),又作PK垂直于x軸于K,求KQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l1與曲線y=相切于點(diǎn)P,直線l2過點(diǎn)P且垂直于l1,若l2交x軸于點(diǎn)Q,又作PK垂直于x軸于K,求KQ的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案