已知函數(shù)f(x)=
2
3
sin(x-
π
3
),x∈[0,
π
2
],那么這個函數(shù)的值域為
 
考點:三角函數(shù)的最值
專題:三角函數(shù)的求值
分析:根據(jù)x的范圍求得x-
π
3
的范圍,再根據(jù)正弦函數(shù)的定義域和值域求得該函數(shù)的值域.
解答: 解:由于x∈[0,
π
2
],∴x-
π
3
∈[-
π
3
,
π
6
],故當(dāng)x-
π
3
=-
π
3
時,函數(shù)取得最小值為-
3
3

當(dāng)x-
π
3
=
π
6
時,函數(shù)取得最大值為
1
3
,故函數(shù)的值域為[-
3
3
,
1
3
]

故答案為:[-
3
3
,
1
3
]
點評:本題主要考查正弦函數(shù)的定義域和值域,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

曲線C的方程為
x2
m2
+
y2
n2
=1,其中m,n是將一枚骰子先后投擲兩次所得點數(shù),事件A=“方程
x2
m2
+
y2
n2
=1表示焦點在x軸上的橢圓”,那么P(A)=( 。
A、
5
12
B、
7
12
C、
1
2
D、
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在河岸 ac一側(cè)測量河的寬度,測量以下四組數(shù)據(jù),較適宜的是( 。 
A、c,α,γ
B、c,b,α
C、c,a,β
D、b,α,γ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點M(0,1),C(2,3),動點P滿足|
PC
|=1,過點M且斜率為k的直線l與動點P的軌跡相交于A、B兩點.
(1)求動點P的軌跡方程;
(2)求實數(shù)k的取值范圍;
(3)求證:
MA
MB
為定值;
(4)若O為坐標(biāo)原點,且
OA
OB
=12,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的方程為x2+y2=4,過點M(2,4)作圓C的兩條切線,切點分別為A,B,直線AB恰好經(jīng)過橢圓T:
x2
a2
+
y2
b2
=1(a>b>0)的右頂點和上頂點.
(1)求橢圓T的方程;
(2)已知直線l:y=kx+
3
(k>0)與橢圓相交于P,Q兩點,O為坐標(biāo)原點,求△OPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓Г的方程為
x2
a2
+
y2
b2
=1(a>b>0)點A,B分別為Г上的兩個動點,O為坐標(biāo)原點,且OA⊥OB;其中OA,OB稱為橢圓的一條半徑.
(1)求證:
1
|OA|2
+
1
|OB|2
=
1
a2
+
1
b2
;|OA|2+|OB|2的最小值為
4a2b2
a2+b2
;
(2)過點O作OH⊥AB于H,求證:|OH|=
ab
a2+b2
;S△OAB的最小值是
a2b2
a2+b2

(3)將(1)(2)的結(jié)論推廣至雙曲線,結(jié)論是否依然成立,若成立,證明你的結(jié)論;若不成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=
n2+n
2
,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=2 an+an,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在[-3,3]上的奇函數(shù),且f(x)在(0,1]是指數(shù)函數(shù),在[1,3]上是二次函數(shù),當(dāng)1≤x≤3時f(x)≤f(2)=
3
2
,f(3)=
1
2
,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在0°~360°之間,與角-150°終邊相同的角是(  )
A、150°B、-30°
C、30°D、210°

查看答案和解析>>

同步練習(xí)冊答案