(1)在區(qū)間[-2,6]上畫(huà)出函數(shù)f(x)的圖象.
(2)設(shè)集合A={x|f(x)≥5},B=(-∞,-2]∪[0,4]∪[6,+∞).試判斷集合A和B之間的關(guān)系,并給出證明.
(3)當(dāng)k>2時(shí),求證:在區(qū)間[-1,5]上,y=kx+3k的圖象位于函數(shù)f(x)圖象的上方.
(1)解析:
(2)解析:方程f(x)=5的解分別是2-,0,4和2+,由于f(x)在(-∞,-1]和[2,5]上單調(diào)遞減,在[-1,2]和[5,+∞)上單調(diào)遞增,因此
A=(-∞,2-]∪[0,4]∪[2+,+∞).
由于2+<6,2->-2,∴BA.
(3)證明:當(dāng)x∈[-1,5]時(shí),f(x)=-x2+4x+5.
g(x)=k(x+3)-(-x2+4x+5)
=x2+(k-4)x+(3k-5)
=(x-)2-,
∵k>2,∴<1.又-1≤x≤5,
①當(dāng)-1≤<1,即2<k≤6時(shí),取x=.
g(x)min=-=-[(k-10)2-64].
∵16≤(k-10)2<64,
∴(k-10)2-64<0,
則g(x)min>0.
②當(dāng)<-1,即k>6時(shí),取x=-1,g(x)min=2k>0.
由①、②可知,當(dāng)k>2時(shí),g(x)>0,x∈[-1,5].
因此,在區(qū)間[-1,5]上,y=k(x+3)的圖象位于函數(shù)f(x)圖象的上方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
x |
2e |
x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
4 |
15 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:徐州模擬 題型:解答題
2 |
| ||
2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com