.如圖(1),在直角梯形ABCD中,,,,,以DE為軸旋轉(zhuǎn)至圖(2)位置,F(xiàn)為DC的中點.     

(1)求證:平面

(2)若平面平面,且BC垂直于AE

求①二面角的大小.

②直線BF與平面ABED所成角的正弦值

 

 

 

 

 

【答案】

(1)連,連.在矩形中, 中點,即的中位線, ,故平面.

                                    …………5分

(2)60                                    5分

 

(3)                               5分

 

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

18、如圖(1),在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分別是線段PC、PD、BC的中點,現(xiàn)將△PDC折起,使平面PDC⊥平面ABCD,如圖(2)所示.在圖(2)中,
(1)求證:AP∥平面EFG;
(2)求二面角G-EF-D的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

26、如圖(1),在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分別是線段PC、PD、BC的中點,現(xiàn)將△PDC沿CD折起,使平面PDC⊥平面ABCD,如圖(2).
(1)求證:PA∥平面EFG.
(2)求二面角G-EF-C的大。
(3)在線段PB上是否存在這樣的點Q,使PC⊥平面ADQ,若存在,請指出它的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•莆田模擬)如圖(1),在直角梯形ACC1A1中,∠CAA1=90°,AA1∥CC1,AA1=4,AC=3,CC1=1,點B在線段AC上,AB=2BC,BB1∥AA1,且BB1交A1C1于點B1.現(xiàn)將梯形ACC1A1沿直線BB1折成二面角A-BB1-C,設(shè)其大小為θ.
(1)在上述折疊過程中,若90°≤θ≤180°,請你動手實驗并直接寫出直線A1B1與平面BCC1B1所成角的取值范圍.(不必證明);
(2)當θ=90°時,連接AC、A1C1、AC1,得到如圖(2)所示的幾何體ABC-A1B1C1,
(i)若M為線段AC1的中點,求證:BM∥平面A1B1C1
(ii)記平面A1B1C1與平面BCC1B1所成的二面角為α(0<α≤90°),求cosa的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•寧德模擬)如圖(1),在直角梯形 ABCD 中,AB∥CD,∠C=90°,CD=2AB=2,∠D=60°,E為DC中點,將四邊形ABCE繞直線AE旋轉(zhuǎn)90°得到四邊形AB′C′E,
如圖(2).
(I)求證:EA⊥B′B;
(II)線段B′C′上是否存在點M,使得EM∥平面DB′B,若存在,確定點M的位 置;若不存在,請說明理由;
(III)求平面CB′D與平面BB′A所成的銳二面角的大小.

查看答案和解析>>

同步練習冊答案