考點:導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)當a=3時,f(x)=-x
2+3x-lnx(x>0).f′(x)=-2x+3-
=
.分別解出f′(x)>0,f′(x)<0,研究函數(shù)f(x)的單調(diào)性,即可得出極值.
(Ⅱ)當a>1時,f′(x)=
=
,對a分類討論:當a=2時,當1<a<2時,當a>2時,即可得出單調(diào)性;
(Ⅲ)假設(shè)存在a滿足題意,不妨設(shè)0<x
1<x
2,由
<2+a恒成立,可得f(x
2)-ax
2-2x
2<f(x
1)-ax
1-2x
1,令g(x)=f(x)-ax-2x,則g(x)=
x2-2x-lnx,則g(x)在(0,+∞)上單調(diào)遞減,利用導(dǎo)數(shù)研究其單調(diào)性即可得出.
解答:
解:(Ⅰ)當a=3時,f(x)=-x
2+3x-lnx(x>0).
f′(x)=-2x+3-
=
.
當
<x<1時,f′(x)>0,函數(shù)f(x)單調(diào)遞增;當0<x<
或x>1時,f′(x)<0,函數(shù)f(x)單調(diào)遞減.
∴f(x)
極大值=f(1)=2,f(x)
極小值=
f()=
+ln2.
(Ⅱ)當a>1時,f′(x)=
=
,
當a=2時,f′(x)=
≤0,函數(shù)f(x)在x>0時單調(diào)遞減;
當1<a<2時,
>1,令f′(x)<0,解得0<x<1或
x>,此時函數(shù)f(x)單調(diào)遞減;令f′(x)>0,解得1<x<
,此時函數(shù)f(x)單調(diào)遞增.
當a>2時,
0<<1,令f′(x)<0,解得0<x<
或x>1,此時函數(shù)f(x)單調(diào)遞減;令f′(x)>0,解得
<x<1,此時函數(shù)f(x)單調(diào)遞增.
綜上可得:當1<a<2時,f(x)在x∈(0,1)或
(,+∞))單調(diào)遞減;f(x)在
(1,)上單調(diào)遞增.
當a=2時,函數(shù)f(x)在(0,+∞)上單調(diào)遞減.
當a>2時,f(x)在
(0,)或(1,+∞)上)單調(diào)遞減;函數(shù)f(x)在
(,1)上單調(diào)遞增.
(Ⅲ)假設(shè)存在a滿足題意,不妨設(shè)0<x
1<x
2,由
<2+a恒成立,
可得f(x
2)-ax
2-2x
2<f(x
1)-ax
1-2x
1,
令g(x)=f(x)-ax-2x,則g(x)=
x2-2x-lnx,
由題意可知:g(x)在(0,+∞)上單調(diào)遞減.
∴g′(x)=(1-a)x-2-
≤0,化為
a≥1--在(0,+∞)上恒成立,
∴a≥1.
點評:本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值,考查了分類討論思想方法,考查了推理能力與計算能力,屬于難題.