【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.
(1)求A∪B,(CUA)∩B;
(2)若A∩C≠,求a的取值范圍.
【答案】(1);;(2).
【解析】
試題分析:(1)根據(jù)數(shù)軸表示集合的交集,并集,和補(bǔ)集;交集就是兩個(gè)集合的公共元素組成的集合,并集就是兩個(gè)集合的所有元素組成的集合,補(bǔ)集就是屬于全集,但不屬于此集合的元素組成的集合;
(2)同樣是利用數(shù)軸,表示集合A和C,若有公共元素,表示端點(diǎn)值.
試題解析:解 (1)A∪B={x|2≤x≤8}∪{x|1<x<6}={x|1<x≤8}.
∵CUA={x|x<2或x>8},
∴(CUA)∩B={x|1<x<2}.
(2)∵A∩C≠,∴a<8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了對(duì)2016年某校中考成績(jī)進(jìn)行分析,在60分以上的全體同學(xué)中隨機(jī)抽出8位,他們的數(shù)學(xué)分?jǐn)?shù)(已折算為百分制)從小到大排是60、65、70、75、80、85、90、95,物理分?jǐn)?shù)從小到大排是72、77、80、84、88、90、93、95. 參考公式:相關(guān)系數(shù) ,
回歸直線(xiàn)方程是: ,其中 ,
參考數(shù)據(jù): , , , .
(1)若規(guī)定85分以上為優(yōu)秀,求這8位同學(xué)中恰有3位同學(xué)的數(shù)學(xué)和物理分?jǐn)?shù)均為優(yōu)秀的概率;
(2)若這8位同學(xué)的數(shù)學(xué)、物理、化學(xué)分?jǐn)?shù)事實(shí)上對(duì)應(yīng)如下表:
學(xué)生編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數(shù)學(xué)分?jǐn)?shù)x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理分?jǐn)?shù)y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
化學(xué)分?jǐn)?shù)z | 67 | 72 | 76 | 80 | 84 | 87 | 90 | 92 |
①用變量y與x、z與x的相關(guān)系數(shù)說(shuō)明物理與數(shù)學(xué)、化學(xué)與數(shù)學(xué)的相關(guān)程度;
②求y與x、z與x的線(xiàn)性回歸方程(系數(shù)精確到0.01),當(dāng)某同學(xué)的數(shù)學(xué)成績(jī)?yōu)?0分時(shí),估計(jì)其物理、化學(xué)兩科的得分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:萬(wàn)元)對(duì)年銷(xiāo)售量(單位:噸)和年利潤(rùn)(單位:萬(wàn)元)的影響。對(duì)近六年的年宣傳費(fèi)和年銷(xiāo)售量的數(shù)據(jù)作了初步統(tǒng)計(jì),得到如下數(shù)據(jù):
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年宣傳費(fèi)(萬(wàn)元) | 38 | 48 | 58 | 68 | 78 | 88 |
年銷(xiāo)售量(噸) | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
經(jīng)電腦擬,發(fā)現(xiàn)年宣傳費(fèi)(萬(wàn)元)與年銷(xiāo)售量(噸)之間近似滿(mǎn)足關(guān)系式即。對(duì)上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(1)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;
(2)規(guī)定當(dāng)產(chǎn)品的年銷(xiāo)售量(噸)與年宣傳費(fèi)(萬(wàn)元)的比值在區(qū)間內(nèi)時(shí)認(rèn)為該年效益良好,F(xiàn)從這6年中任選2年,記其中選到效益良好年的數(shù)量為,試求隨機(jī)變量的分布列和期望。(其中為自然對(duì)數(shù)的底數(shù), )
附:對(duì)于一組數(shù)據(jù),其回歸直線(xiàn)中的斜率和截距的最小二乘估計(jì)分別為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】各項(xiàng)均為正數(shù)的數(shù)列{bn}的前n項(xiàng)和為Sn , 且對(duì)任意正整數(shù)n,都有2Sn=bn(bn+1).
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)如果等比數(shù)列{an}共有2015項(xiàng),其首項(xiàng)與公比均為2,在數(shù)列{an}的每相鄰兩項(xiàng)ak與ak+1之間插入k個(gè)(﹣1)kbk(k∈N*)后,得到一個(gè)新的數(shù)列{cn}.求數(shù)列{cn}中所有項(xiàng)的和;
(3)如果存在n∈N* , 使不等式 成立,求實(shí)數(shù)λ的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,直線(xiàn)過(guò)點(diǎn).
(1)若直線(xiàn)與圓相切,求直線(xiàn)的方程;
(2)若直線(xiàn)與圓交于兩點(diǎn),當(dāng)的面積最大時(shí),求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)x﹣9y﹣8=0與曲線(xiàn)C:y=x3﹣px2+3x相交于A,B,且曲線(xiàn)C在A,B處的切線(xiàn)平行,則實(shí)數(shù)p的值為( )
A.4
B.4或﹣3
C.﹣3或﹣1
D.﹣3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩(UA);(2)若A∪B=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)C為圓(x+1)2+y2=8的圓心,P是圓上的動(dòng)點(diǎn),點(diǎn)Q在圓的半徑CP上,且有點(diǎn)A(1,0)和AP上的點(diǎn)M,滿(mǎn)足 =0, =2 .
(1)當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)Q的軌跡方程;
(2)若斜率為k的直線(xiàn) l與圓x2+y2=1相切,直線(xiàn) l與(1)中所求點(diǎn)Q的軌跡交于不同的兩點(diǎn)F,H,O是坐標(biāo)原點(diǎn),且 ≤ ≤ 時(shí),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市理論預(yù)測(cè)2010年到2014年人口總數(shù)與年份的關(guān)系如下表所示
年份2010+x(年) | 0 | 1 | 2 | 3 | 4 |
人口數(shù)y(十萬(wàn)) | 5 | 7 | 8 | 11 | 19 |
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線(xiàn)性回歸方程;
(2) 據(jù)此估計(jì)2015年該城市人口總數(shù)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com