8.已知a>0,b>0,$\frac{1}{a}$+$\frac{4}$=1,則當(dāng)a+b取得最小值時,ab=18.

分析 由題意可得a+b=(a+b)($\frac{1}{a}$+$\frac{4}$)=5+$\frac{a}$+$\frac{4a}$,由基本不等式可得取最值時a和b的取值,相乘可得答案.

解答 解:∵a>0,b>0,$\frac{1}{a}$+$\frac{4}$=1,
∴a+b=(a+b)($\frac{1}{a}$+$\frac{4}$)
=5+$\frac{a}$+$\frac{4a}$≥5+2$\sqrt{\frac{a}•\frac{4a}}$=9
當(dāng)且僅當(dāng)$\frac{a}$=$\frac{4a}$即b=2a時取等號,
結(jié)合$\frac{1}{a}$+$\frac{4}$=1可得a=3且b=6時,式子取最小值,
∴ab=3×6=18
故答案為:18

點評 本題考查基本不等式求最值,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.向量$\overrightarrow{a}$=(3,4),向量|$\overrightarrow$|=2,若$\overrightarrow{a}$•$\overrightarrow$=-5,那么向量$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)a∈R,若函數(shù)y=ex+2ax,x∈R有大于0的極值點,則(  )
A.a<-$\frac{1}{e}$B.a>-$\frac{1}{e}$C.a<-$\frac{1}{2}$D.a>-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某中學(xué)有甲乙兩個文科班進行數(shù)學(xué)考試,按照大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀統(tǒng)計成績后,得到如下列聯(lián)表:
優(yōu)秀非優(yōu)秀合計
20525
101525
合計302050
(Ⅰ)用分層抽樣的方法在優(yōu)秀的學(xué)生中抽6人,其中甲班抽多少人?
(Ⅱ)在上述抽取的6人中選2人,求恰有一名同學(xué)在乙班的概率;
(Ⅲ)計算出統(tǒng)計量k2,若按95%可靠性要求能否認為“成績與班級有關(guān)”.
下面的臨界值表代參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.“證明:通項公式為an=cqn(cq≠0)的數(shù)列{an}是等比數(shù)列.”所依據(jù)的大前提是等比數(shù)列的定義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)$f(x)=\frac{x-1}{x}-lnx$.
(1)求曲線y=f(x)在點$({\frac{1}{2},f({\frac{1}{2}})})$處的切線方程;
(2)求f(x)在$[{\frac{1}{4},e}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.2015年廈門航空公司在調(diào)查男女乘客140人是否暈機的情況中,已知男乘客60人,其中暈機為15人,女乘客80人,其中暈機為35人.
(1)根據(jù)以上的數(shù)據(jù)建立一個列聯(lián)表
(2)能否在犯錯誤的概率不超過0.001的前提下認為暈機與性別有關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$f(x)=lnx-\frac{1}{x}$,g(x)=ax.
(1)若直線y=g(x)是函數(shù)$y=f(x)+\frac{1}{x}$的圖象的一條切線,求實數(shù)a的值;
(2)若函數(shù)h(x)=f(x)-g(x)在(0,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(3)若f(x)與g(x)的圖象有兩個交點A(x1,y1),B(x2,y2),求證:x1x2>2e2.(取e為2.8,取ln2為0.7,取$\sqrt{2}$為1.4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.極坐標(biāo)方程(θ-$\frac{π}{4}$)ρ+(θ-$\frac{π}{4}$)sinθ=0的圖形是直線y=x或圓${x}^{2}+(y+\frac{1}{2})^{2}=\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊答案