設(shè)集合A={x|1≤x≤2},B={y|1≤y≤4},則下述對(duì)應(yīng)法則f中,不能構(gòu)成A到B的映射的是( )
A.f:x→y=x2
B.f:x→y=3x-2
C.f:x→y=-x+4
D.f:x→y=4-x2
【答案】分析:按照映射的定義,一個(gè)對(duì)應(yīng)能構(gòu)成映射的條件是,A中的每個(gè)元素在集合B中都有唯一的確定的一個(gè)元素與之對(duì)應(yīng).
判斷題中各個(gè)對(duì)應(yīng)是否滿(mǎn)足映射的定義,從而得到結(jié)論.
解答:解:對(duì)于對(duì)應(yīng)f:x→y=x2,當(dāng)1≤x≤2 時(shí),1≤x2≤4,在集合A={x|1≤x≤2}任取一個(gè)值x,
在集合B={y|1≤y≤4}中都有唯一的一個(gè)y值與之對(duì)應(yīng),故A中的對(duì)應(yīng)能夠成映射.
對(duì)于對(duì)應(yīng)f:x→y=3x-2,當(dāng)1≤x≤2 時(shí),1≤3x-2≤4,在集合A={x|1≤x≤2}任取一個(gè)值x,
在集合B={y|1≤y≤4}中都有唯一的一個(gè)y值與之對(duì)應(yīng),故B中的對(duì)應(yīng)能夠成映射.
對(duì)于對(duì)應(yīng)f:x→y=-x+4,當(dāng)1≤x≤2 時(shí),2≤-x+4≤3,在集合A={x|1≤x≤2}任取一個(gè)值x,
在集合B={y|1≤y≤4}中都有唯一的一個(gè)y值與之對(duì)應(yīng),故B中的對(duì)應(yīng)能夠成映射.
對(duì)于對(duì)應(yīng)f:x→y=4-x2 ,當(dāng)x=2 時(shí),y=0,顯然y=0不在集合B中,不滿(mǎn)足映射的定義,
故D中的對(duì)應(yīng)不能構(gòu)成A到B的映射.
故選D.
點(diǎn)評(píng):本題考查映射的定義,一個(gè)對(duì)應(yīng)能構(gòu)成映射時(shí),必須使A中的每個(gè)元素在集合B中都有唯一的確定的一個(gè)元素
與之對(duì)應(yīng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|1+log2|x|≤0},B={x|
1
4
≤x≤2},則A∩(CRB)=( 。
A、[-
1
2
,
1
4
]
B、[-
1
2
,0)∪(0,
1
4
C、(-∞,-
1
2
]∪(
1
4
,+∞)
D、[-
1
2
,0)∪(
1
4
1
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|1-a≤x≤1+a},集合B={x|x<-1或x>5},分別就下列條件求實(shí)數(shù)a的取值范圍:
(Ⅰ)集合A為空集;
(Ⅱ)A∩B=∅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|1<x<4},B={x|x2-2x-3≤0},則A∪B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|1≤x≤2},B={x|x≥a},若A⊆B,則a的范圍是
a≤1
a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|1<x<3},B={x|x<-1或x>2},則A∩B為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案