A. | x+2y-3=0 | B. | x-2y-3=0 | C. | x+2y+3=0 | D. | x-2y+3=0 |
分析 設(shè)過點P(1,1)的弦與橢圓相交于點A(x1,y1),B(x2,y2),可得$\frac{{x}_{1}^{2}}{4}+\frac{{y}_{1}^{2}}{2}$=1,$\frac{{x}_{2}^{2}}{4}+\frac{{y}_{2}^{2}}{2}=1$,相減化簡即可得出.
解答 解:設(shè)過點P(1,1)的弦與橢圓相交于點A(x1,y1),B(x2,y2),斜率為k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$.
則$\frac{{x}_{1}^{2}}{4}+\frac{{y}_{1}^{2}}{2}$=1,$\frac{{x}_{2}^{2}}{4}+\frac{{y}_{2}^{2}}{2}=1$,
相減可得:$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{4}$+$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{2}$=0,
∴$\frac{2×1}{4}$+$\frac{2×1}{2}k$=0,
解得k=-$\frac{1}{2}$.
∴此弦所在的直線方程為$y-1=-\frac{1}{2}(x-1)$,
化為x+2y-3=0.
故選:A.
點評 本題考查了橢圓的標準方程及其性質(zhì)、“點差法”、中點坐標公式、斜率計算公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{17}$ | B. | $\sqrt{61}$ | C. | $\sqrt{41}$ | D. | $\sqrt{37}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y<x<1 | B. | x<y<1 | C. | 1<y<x | D. | 1<x<y |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,$\frac{1}{2}$] | B. | [$\frac{1}{2},+∞$) | C. | ($\frac{1}{4},\frac{1}{2}$] | D. | ($\frac{1}{4},+∞$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com