已知函數(shù)f(x)=
ax2+1
bx+c
,(a,b,c∈Z)
是奇函數(shù),f(-1)=-2,f(2)<3.
(1)求函數(shù)f(x)解析式;
(2)若g(x)=x•f(x),?(x)=g[g(x)]-λg(x),試問:是否存在實數(shù)λ,使∅(x)在(-∞,-1)內(nèi)是單調(diào)遞減,在(-1,0)內(nèi)是單調(diào)遞增的,若存在,求λ值;若不存在,說明理由.
(3)附加題:若m(x)=f(x)-
5
x
,研究函數(shù)m(x),寫出m(x)性質(zhì),并畫出圖象.
分析:(1)由題意可得f(-x)=-f(x),即
a(-x)2+1
-bx+c
=-
ax2+1
bx+c
可求c,再由f(-1)=-2,f(2)<3結(jié)合a,b∈Z 可求a,b,進而可求f(x)
(2)由(1)可得g(x)=xf(x)=1+x2,則∅(x)=g[g(x)]-λg(x)=x4+(2-λ)x2+2-λ,對函數(shù)求導可得∅′(x)=4x3+2(2-λ)x,若使函數(shù)∅(x)在(-∞,-1)內(nèi)是單調(diào)遞減,在(-1,0)內(nèi)是單調(diào)遞增,則∅;(-1)=0即-4-2(2-λ)=0,可求λ,代入檢驗是否符合題意
(3)m(x)=f(x)-
5
x
=x-
4
x
,從函數(shù)的定義域、值域、單調(diào)性、奇偶性等方面研究函數(shù)的性質(zhì)
解答:解:(1)∵函數(shù)f(x)=
ax2+1
bx+c
,(a,b,c∈Z)
是奇函數(shù),
∴f(-x)=-f(x)
a(-x)2+1
-bx+c
=-
ax2+1
bx+c

∴c=0,f(x)=
ax2+1
bx

∵f(-1)=-2,f(2)<3.
a+1
-b
=-2
4a+1
2b
<3

a+1=2b
4a+1-6b
2b
<0

a-2
a+1
<0
,解得-1<a<2
∵a∈Z
∴a=0或a=1
當a=0時,b=
1
2
∉Z

當a=1時,b=1,滿足題意,此時f(x)=
1+x2
x

(2)∵g(x)=xf(x)=1+x2,
∅(x)=g[g(x)]-λg(x)=g(1+x2)-λ(1+x2)=1+(1+x22-λ(1+x2
=x4+(2-λ)x2+2-λ
∴∅′(x)=4x3+2(2-λ)x
若使函數(shù)∅(x)在(-∞,-1)內(nèi)是單調(diào)遞減,在(-1,0)內(nèi)是單調(diào)遞增
則∅;(-1)=0即-4-2(2-λ)=0
∴λ=4,此時∅(x)=x4-2x2-2,∅′(x)=4x3-4x=4x(x-1)(x+1)
∅′(x)>0可得x>1或-1<x<0,即函數(shù)在(1,+∞),(-1,0)單調(diào)遞增
∅′(x)<0可得0<x<1或x<-1即函數(shù)在(0,1),(-∞,-1)單調(diào)遞減
使∅(x)在(-∞,-1)內(nèi)是單調(diào)遞減,在(-1,0)內(nèi)是單調(diào)遞增的λ=4
(3)m(x)=f(x)-
5
x
=x-
4
x
,圖象如右
定義域:(-∞,0)∪(0,+∞)
值域:R
奇偶性:m(-x)=-x+
4
x
=-m(x),函數(shù)為奇函數(shù)
單調(diào)性:在(-∞,0),(0,+∞)上單調(diào)遞增
點評:本題綜合考查了函數(shù)的奇偶性的應用,利用導數(shù)判斷函數(shù)的單調(diào)區(qū)間的存在及函數(shù)性質(zhì)的研究,考查了考試探索新問題的能力
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-
12x+1

(1)求證:不論a為何實數(shù)f(x)總是為增函數(shù);
(2)確定a的值,使f(x)為奇函數(shù);
(3)當f(x)為奇函數(shù)時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)圖象經(jīng)過點Q(8,6).
(1)求a的值,并在直線坐標系中畫出函數(shù)f(x)的大致圖象;
(2)求函數(shù)f(t)-9的零點;
(3)設(shè)q(t)=f(t+1)-f(t)(t∈R),求函數(shù)q(t)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-
1
2x+1
,若f(x)為奇函數(shù),則a=( 。
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a(x-1)x2
,其中a>0.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若直線x-y-1=0是曲線y=f(x)的切線,求實數(shù)a的值;
(III)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定義域;
(2)若f(x)為奇函數(shù),求a的值;
(3)考察f(x)在定義域上單調(diào)性的情況,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案