若3cos()+cos(π+)=0,則cos2sin2的值是

[  ]
A.

B.

C.

D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
m
n
,其中
m
=(sinωx+cosωx,
3
cosωx)
,
n
=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相鄰兩對稱軸間的距離不小于
π
2

(Ⅰ)求ω的取值范圍;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對邊,a=
3
,b+c=3,當ω最大時,f(A)=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC中,a,b,c分別是角A,B,C的對邊,且有sin2C+
3
cos(A+B)=0.
(1)a=4,c=
13
,求△ABC的面積;
(2)若A=
π
3
,cosB>cosC,求
AB
BC
-2
BC
CA
-3
CA
AB
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=sin(ωx+φ),其中ω>0,|φ|<
π
2
,若cos
π
3
cosφ-sin
3
sinφ=0
,且圖象的一條對稱軸離一個對稱中心的最近距離是
π
4

(1)求函數(shù)f(x)的解析式;
(2)若A,B,C是△ABC的三個內角,且f(A)=-1,求sinB+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•江門一模)已知函數(shù)f(x)=sin(ωx+
π
3
)-
3
cos(ωx+
π
3
)(ω>0)的最小正周期為π.
(1)求f(
12
)的值;
(2)若△ABC滿足f(C)+f(B-A)=2f(A),證明:△ABC是直角三角形.

查看答案和解析>>

同步練習冊答案