計算(
2
1-
3
i
)2+(
1+i
3
+i
)2
=
3
-2+(1+2
3
)i
4
3
-2+(1+2
3
)i
4
分析:復(fù)數(shù)分式展開,化簡后,復(fù)數(shù)的分子、分母同乘分母的共軛復(fù)數(shù),復(fù)數(shù)化簡為a+bi(a,b∈R)的形式,
解答:解:復(fù)數(shù)(
2
1-
3
i
)
2
+(
1+i
3
+i
)
2

=[
2(1+
3
i)
(1-
3
i)(1+
3
i)
]
2
+
2i
2+ 2
3i
 

=
-2+2
3
i
4
+
3
+i
4

=
3
-2+(1+2
3
)i
4

故答案為:
3
-2+(1+2
3
)i
4
..
點評:本題考查復(fù)數(shù)代數(shù)形式的乘除運算,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

計算(
2
1-
3
i
)2+(
1+i
3
+i
)2
=______.

查看答案和解析>>

同步練習(xí)冊答案