已知雙曲線C:離心率是,過點(diǎn),且右支上的弦過右焦點(diǎn)
(1)求雙曲線C的方程;
(2)求弦的中點(diǎn)的軌跡E的方程;
(3)是否存在以為直徑的圓過原點(diǎn)O?,若存在,求出直線的斜率k 的值.若不存在,則說明理由.

(1);(2) ,(;(3) 這樣的圓不存在.

解析試題分析:(1)由已知條件雙曲線C:離心率是,過點(diǎn),由此能求出雙曲線C的標(biāo)準(zhǔn)方程.(2)設(shè)M(x,y),,將代入橢圓方程,再利用“點(diǎn)差法”即可求出M的軌跡方程;(3)設(shè),由已知得:,將聯(lián)立,得,將代入,即可得出結(jié)論.
(1).
(2),()-------6分 注:沒有扣1分
(3)假設(shè)存在,設(shè)
由已知得:
       ①

所以       ②
聯(lián)立①②得:無解
所以這樣的圓不存在.        12分
考點(diǎn):1.橢圓方程;2.直線與橢圓的位置關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,設(shè)有雙曲線,F1,F2是其兩個(gè)焦點(diǎn),點(diǎn)M在雙曲線上.
(1)若∠F1MF2=90°,求△F1MF2的面積;
(2)若∠F1MF2=60°,△F1MF2的面積是多少?若∠F1MF2=120°,△F1MF2的面積又是多少?
(3)觀察以上計(jì)算結(jié)果,你能看出隨∠F1MF2的變化,△F1MF2的面積將怎樣變化嗎?試證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓的圓心在坐標(biāo)原點(diǎn),且恰好與直線相切,設(shè)點(diǎn)A為圓上一動(dòng)點(diǎn),軸于點(diǎn),且動(dòng)點(diǎn)滿足,設(shè)動(dòng)點(diǎn)的軌跡為曲線
(1)求曲線C的方程,
(2)直線l與直線l,垂直且與曲線C交于B、D兩點(diǎn),求△OBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,過的左焦點(diǎn)的直線被圓截得的弦長為.
(1)求橢圓的方程;
(2)設(shè)的右焦點(diǎn)為,在圓上是否存在點(diǎn),滿足,若存在,指出有幾個(gè)這樣的點(diǎn)(不必求出點(diǎn)的坐標(biāo));若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知直線 和橢圓,橢圓C的離心率為,連結(jié)橢圓的四個(gè)頂點(diǎn)形成四邊形的面積為.
(1)求橢圓C的方程;
(2)若直線與橢圓C有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)m的取值范圍;
(3)當(dāng)時(shí),設(shè)直線與y軸的交點(diǎn)為P,M為橢圓C上的動(dòng)點(diǎn),求線段PM長度的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,橢圓的中心為原點(diǎn)O,長軸在x軸上,離心率,過左焦點(diǎn)F1作x軸的垂線交橢圓于A、A′兩點(diǎn),|AA′|=4.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)取平行于y軸的直線與橢圓相交于不同的兩點(diǎn)P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點(diǎn)均在圓Q外.求△PP'Q的面積S的最大值,并寫出對(duì)應(yīng)的圓Q的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

過拋物線的頂點(diǎn)作射線與拋物線交于,若,求證:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓)過點(diǎn),且橢圓的離心率為
(1)求橢圓的方程;
(2)若動(dòng)點(diǎn)在直線上,過作直線交橢圓兩點(diǎn),且為線段中點(diǎn),再過作直線.求直線是否恒過定點(diǎn),如果是則求出該定點(diǎn)的坐標(biāo),不是請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的長軸長為,離心率為分別為其左右焦點(diǎn).一動(dòng)圓過點(diǎn),且與直線相切.
(1)(ⅰ)求橢圓的方程;(ⅱ)求動(dòng)圓圓心軌跡的方程;
(2)在曲線上有四個(gè)不同的點(diǎn),滿足共線,共線,且,求四邊形面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案