7.已知函數(shù)f(x)=ln(2x+a2-4)的定義域、值域都為R,則a取值的集合為{-2,2}.

分析 由題意,函數(shù)f(x)=ln(2x+a2-4)的定義域、值域都為R,即2x+a2-4>0在x∈R上恒成立.即可求解.

解答 解:由題意,函數(shù)f(x)=ln(2x+a2-4)的定義域、值域都為R,即2x+a2-4>0在x∈R上恒成立.
∵x∈R,2x>0,
要使2x+a2-4值域?yàn)镽,
∴只需4-a2=0
得:a=±2.
∴得a取值的集合為{-2,2}.
故答案為{-2,2}.

點(diǎn)評 本題考查函數(shù)定義域和值域的關(guān)系以及對數(shù)指數(shù)的性質(zhì),解答此題的關(guān)鍵是理解題意,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)集合P滿足{1,2}⊆P⊆{0,1,2,3,4},滿足條件的P的個數(shù)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.下列四個命題中,正確的是②③④(寫出所有正確命題的序號)
①函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)f(2x)的定義域?yàn)閇0,4];
②設(shè)集合A={-1,0,1},B={-1,1},則在A到B的所有映射中,偶函數(shù)共有4個;
③不存在實(shí)數(shù)a,使函數(shù)$f(x)={π^{a{x^2}+2ax+3}}$的值域?yàn)椋?,1]
④函數(shù)$f(x)={log_{\frac{1}{2}}}({x^2}-ax+3a)$在[2,+∞)上是減函數(shù),則-4<a≤4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列說法中正確的是( 。
A.若p∨q為真命題,則p,q均為真命題
B.“a≥5”是“?x∈[1,2],x2-a≤0恒成立“的充要條件
C.在△ABC中,“a>b”是“sinA>sinB”的必要不充分條件
D.命題“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)全集U=R,集合$A=\{x\left|{y=\sqrt{x}}\right.\},B=\{y\left|{y={{log}_2}(x-\frac{1}{2}),x∈[1,\frac{9}{2}]}\right.\}$,則(∁UA)∩B=( 。
A.B.[-1,0)C.$[1,\frac{9}{2}]$D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知R上的偶函數(shù)f(x)在[0,+∞)單調(diào)遞增,若f(m+1)<f(3m-1),則實(shí)數(shù)m的取值范圍是m>1或m<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.(1)設(shè)橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$過點(diǎn)(0,4),離心率為$\frac{3}{5}$,求C的標(biāo)準(zhǔn)方程;
(2)已知拋物線的準(zhǔn)線方程是y=-2,求拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)$f(x)={log_2}^{\frac{x-1}{x+1}}$,g(x)=3ax+1-a,h(x)=f(x)+g(x).
(1)當(dāng)a=1時,判斷函數(shù)h(x)在(1,+∞)上的單調(diào)性及零點(diǎn)個數(shù);
(2)若關(guān)于x的方程f(x)=log2g(x)有兩個不相等實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知定義在R上的單調(diào)遞增函數(shù)f(x)是奇函數(shù),當(dāng)x>0時,$f(x)=\sqrt{x}+1$.
(1)求f(0)的值及f(x)的解析式;
(2)若f(k•4x-1)<f(3•4x-2x+1)對任意x∈R恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案