在△ABC中,角A,B,C的對邊分別為a,b,c,,
(1)求a的值;
(2)求sin(2A-B)的值.
【答案】分析:(1)由角B求出sinB,由A的余弦值求出正弦值,然后直接利用正弦定理求a的值;
(2)利用二倍角的正弦和余弦公式求出sin2A和cos2A的值,直接展開兩角差的正弦公式求sin(2A-B)的值.
解答:解:(1)∵A,B,C為△ABC的內(nèi)角,,

由正弦定理,得
(2)∵,
,
又∵,
,
,
∴sin(2A-B)=sin2AcosB-cos2AsinB=
點評:本題考查了正弦定理,二倍角的正弦和余弦公式,考查了兩角和與差的正弦函數(shù),解答的關(guān)鍵是公示的記憶與角范圍的確定,是中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大;
(2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習冊答案