已知函數(shù)f(x)=ln(1+x)-ax.
(1)討論函數(shù)f(x)在定義域內的最值(4分);
(2)已知數(shù)列{an}滿足a1=1,an+1=(1+
1
n2
)an+
1
2n
(n∈N+)

①證明對一切n∈N+且n≥2,an≥2(4分);
②證明對一切n∈N+,an<e3(這里e是自然對數(shù)的底數(shù))(6分).
分析:(1)當a≤0時,f(x)在其定義域(-1,+∞)內是增函數(shù),無最值.當a>0時,f(x)=
1-a-ax
1+x
=
-a(x-
1
a
+1)
1+x
,由f′(x)=0,x=
1
a
-1∈(-1,+∞)
,由此能夠得到函數(shù)f(x)在定義域內的最值.
(2)①易用數(shù)學歸納法證明.②當a=1時,ln(1+x)<x對x>0恒成立,由an+1≤(1+
1
n2
)an+
an
2n
=(1+
1
n2
+
1
2n
)an
,知lnan+1≤ln[(1+
1
n2
+
1
2n
)an]=lnan+ln(1+
1
n2
+
1
2n
)
,所以lnan+1-lnan≤ln(1+
1
n2
+
1
2n
)<
1
n2
+
1
2n
.由此能夠推導出對一切n∈N+,an<e3
解答:解:(1)當a≤0時,f(x)在其定義域(-1,+∞)內是增函數(shù),無最值;]
當a>0時,f(x)=
1-a-ax
1+x
=
-a(x-
1
a
+1)
1+x
,由f′(x)=0,x=
1
a
-1∈(-1,+∞)

x∈(-1,
1
a
-1)
時,f'(x)>0,f(x)在(-1,
1
a
-1)
內遞增;x∈(
1
a
-1,+∞)
時,f′(x)<0,f(x)在x∈(
1
a
-1,+∞)
內遞減,
f(x)=f(
1
a
-1)=-lna-1+a
為f(x)在定義域內的最大值;f(x)在其定義域(-1,+∞)內無最小值
(2)①易用數(shù)學歸納法證明.
②當a=1時,由第(1)小題知ln(1+x)<x對x>0恒成立,
由①知 an+1≤(1+
1
n2
)an+
an
2n
=(1+
1
n2
+
1
2n
)an

所以  lnan+1≤ln[(1+
1
n2
+
1
2n
)an]=lnan+ln(1+
1
n2
+
1
2n
)

所以  lnan+1-lnan≤ln(1+
1
n2
+
1
2n
)<
1
n2
+
1
2n

顯然a1,a2<e3;因為  lna1=ln1=0,所以n≥3時,lnan=(lnan-lnan-1)+(lnan-1-lnan-2)+…+(lna2-lna1<(
1
(n-1)2
+
1
2n-1
)+…+(
1
12
+
1
2
)
≤[1+
1
1×2
+
1
2×3
+…+
1
(n-2)(n-1)
]+[
1
2
+
1
22
+…+
1
2n=1
]
=3-
1
n-1
-
1
2n-1
<3=lne3
,
所以   an<e3,綜合知對一切n∈N+,an<e3
點評:本題考查數(shù)列和函數(shù)的綜合運用,解題時要認真審題,仔細分析,注意挖掘題設中的隱含條件,合理地進行等介轉化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2012的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調增區(qū)間;
(2)已知當x>0時,函數(shù)在(0,
6
)上單調遞減,在(
6
,+∞)上單調遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案