(2006•靜安區(qū)二模)設x∈C,則方程x2-2x+5=0的根為
x=1±2i
x=1±2i
分析:根據方程x2-2x+5=0可知△<0,而在方程ax2+bx+c=0中,若△<0,則x=
-b±
b2-4ac
i
2a
可求出所求.
解答:解:在方程x2-2x+5=0中,
∵△=4-20=-16,
∴x=
16
i
2
=1±2i
故答案為:x=1±2i
點評:本題考查在復數(shù)范圍內解一元二次方程.在方程ax2+bx+c=0中,若△<0,則x=
-b±
b2-4ac
i
2a
,屬于容易題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2006•靜安區(qū)二模)過點A(0,2)且與直線3x+2y-1=0垂直的直線方程為
2x-3y+6=0
2x-3y+6=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•靜安區(qū)二模)若點P(sinα,cosα)在第二象限,則角α的終邊在第
象限.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•靜安區(qū)二模)對于集合A={x|x2-x-6≤0}和B={x||x-a|≤1},若A∩B=B,則實數(shù)a的取值范圍是
-1≤a≤2
-1≤a≤2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•靜安區(qū)二模)在一個袋子里有18個紅球和2個白球,現(xiàn)從中隨機拿出3個,則其中至少有一個白球的概率是
27
95
27
95
(用分數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•靜安區(qū)二模)方程log2(2-3•2x)=2x+1的解x=
-1
-1

查看答案和解析>>

同步練習冊答案