從裝有個紅球,個白球和個黑球的袋中逐一取球,已知每個球被抽取的可能性相同.

(1)若抽取后又放回,抽取次,分別求恰有次是紅球的概率及抽全三種顏色球的概率;

(2)若抽取后不放回,求抽完紅球所需次數(shù)不少于4次的概率;

(3)記紅球、白球、黑球?qū)?yīng)的號碼為,現(xiàn)從盒中有放回地先后抽出的兩球的號碼分別記

,記,求隨機變量的分布列.

 

 

【答案】

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010年延安市高一下學(xué)期期末考試數(shù)學(xué)卷 題型:選擇題

從裝有個紅球和個黒球的口袋內(nèi)任取個球,那么互斥而不對立的兩個事件是(    )

A.至少有一個黒球與都是黒球    

B.至少有一個黒球與都是白球    

C.恰有個黒球與恰有個黒球    

D.至少有一個黒球與至少有個紅球

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年度新課標高三上學(xué)期數(shù)學(xué)單元測試10-文科-概率統(tǒng)計初步 題型:選擇題

 從裝有個紅球和個白球的口袋內(nèi)任取個球,那么互斥而不對立的兩個事件是(    )A.至少有個白球;都是白球    B.至少有個白球;至少有個紅球

    C.恰有個白球;恰有個白球    D.至少有一個白球;都是紅球

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年度新課標高三上學(xué)期數(shù)學(xué)單元測試10-理科-概率統(tǒng)計初步 題型:選擇題

 從裝有個紅球和個白球的口袋內(nèi)任取個球,那么互斥而不對立的兩個事件是(    )A.至少有個白球;都是白球    B.至少有個白球;至少有個紅球

    C.恰有個白球;恰有個白球    D.至少有一個白球;都是紅球

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商場舉行的“三色球”購物摸獎活動規(guī)定:在一次摸獎中,摸獎?wù)呦葟难b有個紅球與個白球的袋中任意摸出個球,再從裝有個藍球與個白球的袋中任意摸出個球,根據(jù)摸出個球中紅球與藍球的個數(shù),設(shè)一、二、三等獎如下:

獎級

摸出紅、藍球個數(shù)

獲獎金額

一等獎

3紅1藍

200元

二等獎

3紅0藍

50元

三等獎

2紅1藍

10元

其余情況無獎且每次摸獎最多只能獲得一個獎級。

(1)求一次摸獎恰好摸到1個紅球的概率;

(2)求摸獎?wù)咴谝淮蚊勚蝎@獎金額的分布列與期望。

查看答案和解析>>

同步練習(xí)冊答案