已知函數(shù)f(x)=x3+ax2+bx+c,(x∈[-1,2]),且函數(shù)f(x)在x=1和x=-
23
處都取得極值.
(1)求實(shí)數(shù)a,b的值;
(2)求函數(shù)f(x)的極值;
(3)若對(duì)任意x∈[-1,2],f(x)<c2恒成立,求實(shí)數(shù)c的取值范圍.
分析:(1)根據(jù)所給的函數(shù)的解析式,對(duì)函數(shù)求導(dǎo),使得導(dǎo)函數(shù)等于0,得到關(guān)于a,b的關(guān)系式,解方程組即可求出a,b的值;
(2)對(duì)函數(shù)求導(dǎo),寫出函數(shù)的導(dǎo)函數(shù)等于0的x的值,分析函數(shù)的單調(diào)性,求出極值點(diǎn),代入可得函數(shù)f(x)的極值;
(3)若對(duì)任意x∈[-1,2],f(x)<c2恒成立,則函數(shù)f(x)在[-1,2]上的最大值<c2,構(gòu)造關(guān)于c的不等式,解不等式可得實(shí)數(shù)c的取值范圍.
解答:(1)解:(1)f(x)=x3+ax2+bx+c,
f′(x)=3x2+2ax+b        
由f′(-
2
3
)=
12
9
-
4
3
a+b=0,
f′(1)=3+2a+b=0   
得a=-
1
2
,b=-2                    
(2)由(1)知f′(x)=3x2-x-2,
x (-1,-
2
3
-
2
3
(-
2
3
,1)
1 (1,2)
f′(x) + 極大值 - 極小值 +
f(x) c+
22
27
c-
3
2
∴函數(shù)f(x)的極大值為c+
22
27
,極小值為c-
3
2

(3)∵f(2)=2+c
∴x∈[-1,2]時(shí),f(x)的最大值為f(2)=2+c
∵對(duì)于任意的x∈[-1,2],f(x)<c2恒成立,
∴只需2+c<c2
解得c<-1或c>2.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)在某點(diǎn)取得極值的條件,導(dǎo)數(shù)的最大值、最小值問(wèn)題中的應(yīng)用,是導(dǎo)數(shù)的綜合應(yīng)用問(wèn)題,難度中檔.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案