【題目】已知,函數(shù).
(1)若,證明:函數(shù)在區(qū)間上是單調(diào)增函數(shù);
(2)求函數(shù)在區(qū)間上的最大值;
(3)若函數(shù)的圖像過原點,且的導數(shù),當時,函數(shù)過點的切線至少有2條,求實數(shù)的值.
【答案】(1)證明見解析;(2)當時,最大值為;當時,最大值為(3)
【解析】
(1)由題,利用導函數(shù)求單調(diào)區(qū)間即可;
(2)利用導數(shù)可以推導得到在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),則當時,的最大值為和中的最大值,作差可得,設(shè),再次利用導數(shù)推導的單調(diào)性,進而得到上的最大值;
(3)由題可得,設(shè)切點為,則處的切線方程為:,將代入可得,則將原命題等價為關(guān)于的方程至少有2個不同的解,設(shè),進而利用導函數(shù)判斷的單調(diào)性,從而求解即可
(1)證明:,則,
當時,,
,即此時函數(shù)在區(qū)間上是單調(diào)增函數(shù).
(2)由(1)知,當時,函數(shù)在區(qū)間上是單調(diào)增函數(shù),
當時,,則,,則在區(qū)間上是單調(diào)減函數(shù);
同理,當時,在區(qū)間上是單調(diào)增函數(shù),在區(qū)間上是單調(diào)減函數(shù);
即當,且時,在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),
則當時,的最大值為和中的最大值,
,
令,
則,
在上為增函數(shù),
,
當時,,即,此時最大值為;
當時,,即,此時最大值為.
(3),
,
的圖像過原點,
,即,則,
設(shè)切點為,則處的切線方程為:,
將代入得,
即(※),
則原命題等價為關(guān)于的方程(※)至少有2個不同的解,
設(shè),
則,
令,,
,
當和時,,此時函數(shù)為增函數(shù);
當時,,此時函數(shù)減函數(shù),
的極大值為,
的極小值為,
設(shè),則,則原命題等價為,即對恒成立,
由得,
設(shè),則,
令,則,,當時,;當時,,
即在上單調(diào)遞增,在上單調(diào)遞減,
的最大值為,,
故,
綜上所述,當時,函數(shù)過點的切線至少有2條,此時實數(shù)m的值為
科目:高中數(shù)學 來源: 題型:
【題目】為評估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)零件的流水線上隨機抽取100件零件作為樣本,測量其直徑后,整理得到下表:
經(jīng)計算,樣本的平均值,標準差,以頻率值作為概率的估計值.
(1)為評判一臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進行評判(表示相應事件的概率);①;②;③,評判規(guī)則為:若同時滿足上述三個不等式,則設(shè)備等級為甲;僅滿足其中兩個,則等級為乙;若僅滿足其中一個,則等級為丙;若全部不滿足,則等級為丁,試判斷設(shè)備的性能等級.
(2)將直徑小于等于或直徑大于的零件認為是次品.
(ⅰ)若從設(shè)備的生產(chǎn)流水線上隨意抽取件零件,求恰有一件次品的概率;
(ⅱ)若從樣本中隨意抽取件零件,計算其中次品個數(shù)的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,底面是平行四邊形,平面平面,,在上.
(1)若點是的中點,求證:平面;
(2)在線段上確定點的位置,使得二面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了檢驗訓練情況,武警某支隊于近期舉辦了一場展示活動,其中男隊員12人,女隊員18人,測試結(jié)果如莖葉圖所示(單位:分).若成績不低于175分者授予“優(yōu)秀警員”稱號,其他隊員則給予“優(yōu)秀陪練員”稱號.
(1)若用分層抽樣的方法從“優(yōu)秀警員”和“優(yōu)秀陪練員”中共提取10人,然后再從這10人中選4人,那么至少有1人是“優(yōu)秀警員”的概率是多少?
(2)若所有“優(yōu)秀警員”中選3名代表,用表示所選女“優(yōu)秀警員”的人數(shù),試求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.
(Ⅰ)由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請用相關(guān)系數(shù)加以說明;
(Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預測2016年我國生活垃圾無害化處理量.
附注:
參考數(shù)據(jù):,,
,≈2.646.
參考公式:相關(guān)系數(shù)
回歸方程中斜率和截距的最小二乘估計公式分別為:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其圖象關(guān)于直線對稱,為了得到函數(shù)的圖象,只需將函數(shù)的圖象上的所有點( )
A.先向左平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變
B.先向右平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變
C.先向右平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變
D.先向左平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某冰糖橙,甜橙的一種,云南著名特產(chǎn),以味甜皮薄著稱。該橙按照等級可分為四類:珍品、特級、優(yōu)級和一級(每箱有5kg),某采購商打算訂購一批橙子銷往省外,并從采購的這批橙子中隨機抽取100箱,利用橙子的等級分類標準得到的數(shù)據(jù)如下表:
等級 | 珍品 | 特級 | 優(yōu)級 | 一級 |
箱數(shù) | 40 | 30 | 10 | 20 |
(1)若將頻率改為概率,從這100箱橙子中有放回地隨機抽取4箱,求恰好抽到2箱是一級品的概率:
(2)利用樣本估計總體,莊園老板提出兩種購銷方案供采購商參考:
方案一:不分等級賣出,價格為27元/kg;
方案二:分等級賣出,分等級的橙子價格如下:
等級 | 珍品 | 特級 | 優(yōu)級 | 一級 |
售價(元/kg) | 36 | 30 | 24 | 18 |
從采購商的角度考慮,應該采用哪種方案?
(3)用分層抽樣的方法從這100箱橙子中抽取10箱,再從抽取的10箱中隨機抽取3箱,X表示抽取的是珍品等級,求x的分布列及數(shù)學期望E(X).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高考數(shù)學考試中有12道選擇題,每道選擇題有4個選項,其中有且僅有一個是正確的.評分標準規(guī)定:在每小題給出的四個選項中,只有一項是符合題目要求的,答對得5分,不答或答錯得0分.某考生每道選擇題都選出一個答案,能確定其中有8道題的答案是正確的,而其余題中,有兩道題都可判斷出兩個選項是錯誤的,有一道題能判斷出一個選項是錯誤的,還有一道題因不理解題意只能亂猜.試求該考生的選擇題:
(1)得60分的概率;
(2)得多少分的概率最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com