【題目】隨著經(jīng)濟(jì)的發(fā)展,個人收入的提高,自2019年1月1日起,個人所得稅起征點(diǎn)和稅率的調(diào)整,調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應(yīng)納稅所得額,依照個人所得稅稅率表,調(diào)整前后的計(jì)算方法如下表:
個人所得稅稅率表(調(diào)整前) | 個人所得稅稅率表(調(diào)整后) | ||||
免征額3500元 | 免征額5000元 | ||||
級數(shù) | 全月應(yīng)納稅所得額 | 稅率(%) | 級數(shù) | 全月應(yīng)納稅所得額 | 稅率(%) |
1 | 不超過1500元部分 | 3 | 1 | 不超過3000元部分 | 3 |
2 | 超過1500元至4500元的部分 | 10 | 2 | 超過3000元至12000元的部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 3 | 超過12000元至25000元的部分 | 20 |
… | … | … | … | … | … |
某稅務(wù)部門在某公司利用分層抽樣方法抽取某月100個不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:
收入(元) | ||||||
人數(shù) | 30 | 40 | 10 | 8 | 7 | 5 |
(1)若某員工2月的工資、薪金等稅前收入為7500元時,請計(jì)算一下調(diào)整后該員工的實(shí)際收入比調(diào)整前增加了多少?
(2)現(xiàn)從收入在及的人群中按分層抽樣抽取7人,再從中選4人作為新納稅法知識宣講員,用表示抽到作為宣講員的收入在元的人數(shù),表示抽到作為宣講員的收入在元的人數(shù),設(shè)隨機(jī)變量,求的分布列與數(shù)學(xué)期望.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點(diǎn)到定直線:的距離比到定點(diǎn)的距離大2.
(1)求動點(diǎn)的軌跡的方程;
(2)在軸正半軸上,是否存在某個確定的點(diǎn),過該點(diǎn)的動直線與曲線交于,兩點(diǎn),使得為定值.如果存在,求出點(diǎn)坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知{an}是等差數(shù)列,其前n項(xiàng)和Sn=n2﹣2n+b﹣1,{bn}是等比數(shù)列,其前n項(xiàng)和Tn,則數(shù)列{ bn +an}的前5項(xiàng)和為( 。
A.37B.-27C.77D.46
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的離心率為,左、右頂點(diǎn)分別為A,B,點(diǎn)M是橢圓C上異于A,B的一點(diǎn),直線AM與y軸交于點(diǎn)P.
(Ⅰ)若點(diǎn)P在橢圓C的內(nèi)部,求直線AM的斜率的取值范圍;
(Ⅱ)設(shè)橢圓C的右焦點(diǎn)為F,點(diǎn)Q在y軸上,且∠PFQ=90°,求證:AQ∥BM.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個結(jié)論,正確的是( )
①質(zhì)檢員從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,每間隔15分鐘抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測,這樣的抽樣是分層抽樣;
②在回歸直線方程中,當(dāng)變量每增加一個單位時,變量增加0.13個單位;
③在頻率分布直方圖中,所有小矩形的面積之和是1;
④對于兩個分類變量與,求出其統(tǒng)計(jì)量的觀測值,觀測值越大,我們認(rèn)為“與有關(guān)系”的把握程度就越大.
A.②④B.②③C.①③D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】同程旅游隨機(jī)調(diào)查了年齡在(單位:歲)內(nèi)的1250人的購票情況,其中50歲以下(不包含50歲)的有900人,50歲以上(包含50歲)的有350人,由調(diào)查數(shù)據(jù)的統(tǒng)計(jì)結(jié)果顯示,有的人參與網(wǎng)上購票,網(wǎng)上購票人數(shù)的頻率分布直方圖如下圖所示.
(1)已知年齡在,,的網(wǎng)上購票人數(shù)成等差數(shù)列,求的值;
(2)根據(jù)題目數(shù)據(jù)填寫列聯(lián)表,并根據(jù)填寫數(shù)據(jù)判斷能否在犯錯誤的概率不超過0.001的前提下,認(rèn)為網(wǎng)上購票與年齡有關(guān)系?
50歲以下 | 50歲以上 | 總計(jì) | |
參與網(wǎng)上購票 | |||
不參與網(wǎng)上購票 | |||
總計(jì) |
附:
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
(3)為鼓勵大家網(wǎng)上購票,該平臺常采用購票就發(fā)放酒店入住代金券的方法進(jìn)行促銷,具體做法如下:年齡在歲的每人發(fā)放20元,其余年齡段的每人發(fā)放50元,先按發(fā)放代金券的金額采用分層抽樣的方式從參與調(diào)查的1000位網(wǎng)上購票者中抽取10人,并在這10人中隨機(jī)抽取3人進(jìn)行回訪調(diào)查,求此3人獲得代金券的金額總和的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為菱形,,平面底面,是上的一點(diǎn).
(1)證明:平面平面;
(2)若直線平面,且,求直線與平面所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為抗擊新型冠狀病毒,普及防護(hù)知識,某校開展了“疫情防護(hù)”網(wǎng)絡(luò)知識競賽活動.現(xiàn)從參加該活動的學(xué)生中隨機(jī)抽取了100名學(xué)生,將他們的比賽成績(滿分為100分)分為6組:,得到如圖所示的頻率分布直方圖.
(1)求的值,并估計(jì)這100名學(xué)生的平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);
(2)在抽取的100名學(xué)生中,規(guī)定:比賽成績不低于80分為“優(yōu)秀”,比賽成績低于80分為“非優(yōu)秀”.請將下面的2×2列聯(lián)表補(bǔ)充完整,并判斷是否有99%的把握認(rèn)為“比賽成績是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
男生 | 40 | ||
女生 | 50 | ||
合計(jì) | 100 |
參考公式及數(shù)據(jù):.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓E:()過點(diǎn),其心率等于.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若A,B分別是橢圓E的左,右頂點(diǎn),動點(diǎn)M滿足,且橢圓E于點(diǎn)P.
①求證:為定值:
②設(shè)與以為直徑的圓的另一交點(diǎn)為Q,求證:直線經(jīng)過定點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com