、是兩條不同的直線,、是兩個不同的平面,是下列命題中正確的是(  。
A.若,則
B.若,則
C.若,則
D.若,,則
D

試題分析:A項中可能可能直線在平面內;B項中直線與平面平行,相交或直線在平面內;C項直線與平面平行或直線在平面內;D項正確,兩面的法向量垂直可得到兩面垂直
點評:本題考察了空間線面垂直平行的判定與性質,屬于基本知識點的考查,要求學生對基本定理掌握熟練準確
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐的底面是邊長為2的菱形,.已知 .

(Ⅰ)證明:
(Ⅱ)若的中點,求三菱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

四面體ABCD中,AD與BC互相垂直,且AB+BD=AC+CD.則下列結論中錯誤的是(     )
A.若分別作△BAD和△CAD的邊AD上的高,則這兩條高所在直線異面
B.若分別作△BAD和△CAD的邊AD上的高,則這兩條高長度相等
C.AB=AC且DB=DC
D.∠DAB=∠DAC

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在四棱錐中,,,的中點,

(1)求證:;
(2)求證:;
(3)求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對于平面與共面的直線m,n,下列命題為真命題的是  (    )
A.若m,n與所成的角相等,則m//n B.若m//,n//,則m//n
C.若,,則//D.若m,n//,則m//n

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

是三條不同的直線, 是三個不同的平面,
①若都垂直,則    
②若,則
③若,則   
④若與平面所成的角相等,則
上述命題中的真命題是__________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

用M表示平面,表示一條直線,則M內至少有一直線與                     (   )
A.平行;B.相交; C.異面; D.垂直。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

、是不同的直線,、是不同的平面,以下四個命題為真命題的是
① 若 則    ②若,則
③ 若,則  ④若,則
A.①③B.①②③C.②③④D.①④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖四棱錐E—ABCD中,底面ABCD是平行四邊形!螦BC=45°,BE=BC=   EA=EC=6,M為EC中點,平面BCE⊥平面ACE,AE⊥EB

(I)求證:AE⊥BC (II)求四棱錐E—ABCD體積

查看答案和解析>>

同步練習冊答案