已知函數(shù)f(x)的定義域?yàn)镽,對(duì)任意實(shí)數(shù)m,n都有f(m+n)=f(m)•f(n)且當(dāng)x>0時(shí),0<f(x)<1.
(1)證明f(0)=1,且x<0時(shí),f(x)>1;
(2)證明f(x)在R上單調(diào)遞減.
證明:(1)令m=1,n=0,代入f(m+n)=f(m)•f(n)中得:
f(1+0)=f(1)•f(0),即f(1)=f(1)•f(0),
∵1>0,
∴0<f(1)<1,
∴f(0)=1…2分
當(dāng)x<0時(shí),-x>0,故得0<f(-x)<1,令m=x,n=-x,則m+n=0,代入f(m+n)=f(m)•f(n)中得:
f(x)•f(-x)=f(0)=1,
∴f(x)=
>1…6分
(2)設(shè)x
1<x
2,則x
2-x
1>0且0<f(x
2-x
1)<1,f(x
1)>0,
∴f(x
2)-f(x
1)=f(x
2-x
1+x
1)-f(x
1)
=f(x
2-x
1)•f(x
1)-f(x
1)
=f(x
1)[f(x
2-x
1)-1],
∵x
2-x
1>0,
∴f(x
2-x
1)<1,
∴f(x
2-x
1)-1<0,
∴f(x
2)-f(x
1)<0,
∴f(x
1)>f(x
2),
∴f(x)在R上單調(diào)遞減.
分析:(1)令m=1,n=0,代入f(m+n)=f(m)•f(n)即可;
(2)利用單調(diào)函數(shù)的定義,設(shè)x
1<x
2,判斷f(x
2)-f(x
1)<0即可.
點(diǎn)評(píng):本題考查抽象函數(shù)及其應(yīng)用,考查函數(shù)單調(diào)性的判斷與證明,著重考查單調(diào)函數(shù)的定義的應(yīng)用,屬于難題.