【題目】下列選項(xiàng)中說法正確的是( )
A.命題“p∨q為真”是命題“p∧q為真”的必要條件
B.向量 , 滿足 ,則 與 的夾角為銳角
C.若am2≤bm2 , 則a≤b
D.“?x0∈R,x02﹣x0≤0”的否定是“?x∈R,x2﹣x≥0”
【答案】A
【解析】解:對于A,若p∨q為真命題,則p,q至少有一個(gè)為真命題,若p∧q為真命題,則p,q都為真命題,則“p∨q為真命題”是“p∧q為真命題”的必要不充分條件,正確; 對于B,根據(jù)向量數(shù)量積的定義,向量 , 滿足 ,則 與 的夾角為銳角或同向,故錯(cuò);
對于C,如果m2=0時(shí),am2≤bm2成立,a≤b不一定成立,故錯(cuò);
對于D,“x0∈R,x02﹣x0≤0”的否定是“x∈R,x2﹣x>0”,故錯(cuò).
故選:A.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用命題的真假判斷與應(yīng)用的相關(guān)知識(shí)可以得到問題的答案,需要掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)
(1)若函數(shù)是偶函數(shù),求實(shí)數(shù)的取值范圍;
(2)若函數(shù)且任意都有恒成立,求實(shí)數(shù)的取值范圍;
(3)若,求在上的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,D為BC的中點(diǎn),∠BAD+∠C≥90°. (Ⅰ)求證:sin2C≤sin2B;
(Ⅱ)若cos∠BAD=﹣ ,AB=2,AD=3,求AC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=60°,AB=5,AC=4,D是AB上一點(diǎn),且 =5,則| |等于( )
A.2
B.4
C.6
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC= ,點(diǎn)E在AD上,且AE=2ED. (Ⅰ)已知點(diǎn)F在BC上,且CF=2FB,求證:平面PEF⊥平面PAC;
(Ⅱ)當(dāng)二面角A﹣PB﹣E的余弦值為多少時(shí),直線PC與平面PAB所成的角為45°?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c,且2asinB= b.
(1)求角A的大小;
(2)若0<A< ,a=6,且△ABC的面積S= ,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x,y滿足: ,若目標(biāo)函數(shù)z=ax+y取最大值時(shí)的最優(yōu)解有無數(shù)多個(gè),則實(shí)數(shù)a的值是( )
A.0
B.﹣1
C.±1
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P為函數(shù)f(x)=lnx的圖象上任意一點(diǎn),點(diǎn)Q為圓 上任意一點(diǎn),則線段PQ長度的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)家趙爽設(shè)計(jì)的弦圖(如圖1)是由四個(gè)全等的直角三角形拼成,四個(gè)全等的直角三角形也可拼成圖2所示的菱形,已知弦圖中,大正方形的面積為100,小正方形的面積為4,則圖2中菱形的一個(gè)銳角的正弦值為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com