已知拋物線y2=4x與橢圓x2+數(shù)學(xué)公式=1(a>1)交于A、B兩點(diǎn),點(diǎn)F為拋物線的焦點(diǎn),若∠AFB=120°,則橢圓的離心率為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
A
分析:先根據(jù)題意畫出圖形,再由橢圓和拋物線的對(duì)稱性,求出∠AFD=60°,由拋物線y2=4x(p>0)求焦點(diǎn)F坐標(biāo),再設(shè)AF=2m,利用三角函數(shù)用m表示出AD和FD,再根據(jù)點(diǎn)F得位置進(jìn)行分類,表示出A的坐標(biāo),代入拋物線和橢圓方程求出m和a的值,再由a、b、c和定義求得橢圓的離心率.
解答:解:由題意畫出如圖形如下:設(shè)AB于x軸的交點(diǎn)是D,
∵y2=4x,∴焦點(diǎn)F(1,0),
由橢圓和拋物線的對(duì)稱性得,AB⊥x軸,∠AFD=60°,
設(shè)AF=2m(m>0),在RT△AFD中,F(xiàn)D=m,AD=m,
(1)當(dāng)點(diǎn)F在橢圓的內(nèi)部時(shí),由圖得A(1+m,m),代入y2=4x得,3m2-4m-4=0,
解得,m=2或-(舍去),則A(3,2),把點(diǎn)A代入x2+=1,解得:無(wú)解;
(2)當(dāng)點(diǎn)F在橢圓的外部時(shí),由圖得有A(1-m,m),代入y2=4x得,3m2+4m-4=0,
解得,m=或-2(舍去),則A(,),把點(diǎn)A代入x2+=1,
解得a2=,故c2=a2-1=,
∴e===
故選A.
點(diǎn)評(píng):本題考查了橢圓與拋物線的綜合問(wèn)題.在求橢圓的離心率時(shí),一般是求出a和c,也可以先求出b和c或a,b;再利用a,b,c之間的關(guān)系來(lái)求離心率e,本題易錯(cuò)的地方是對(duì)應(yīng)焦點(diǎn)F的位置忘記分類討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=4x的焦點(diǎn)為F,其準(zhǔn)線與x軸交于點(diǎn)M,過(guò)M作斜率為k的直線與拋物線交于A、B兩點(diǎn),弦AB的中點(diǎn)為P,AB的垂直平分線與x軸交于點(diǎn)E(x0,0).
(1)求k的取值范圍;
(2)求證:x0>3;
(3)△PEF能否成為以EF為底的等腰三角形?若能,求此k的值;若不能,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線
y
2
 
=4x
的焦點(diǎn)為F,過(guò)點(diǎn)A(4,4)作直線l:x=-1垂線,垂足為M,則∠MAF的平分線所在直線的方程為
x-2y+4=0
x-2y+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=4x,焦點(diǎn)為F,頂點(diǎn)為O,點(diǎn)P(m,n)在拋物線上移動(dòng),Q是OP的中點(diǎn),M是FQ的中點(diǎn).
(1)求點(diǎn)M的軌跡方程.
(2)求
nm+3
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=4x與直線2x+y-4=0相交于A、B兩點(diǎn),拋物線的焦點(diǎn)為F,那么|
FA
|+|
FB
|
=
7
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=4x,其焦點(diǎn)為F,P是拋物線上一點(diǎn),定點(diǎn)A(6,3),則|PA|+|PF|的最小值是
7
7

查看答案和解析>>

同步練習(xí)冊(cè)答案