已知向量
a
b
滿足|
a
|=|
b
|=1
,且它們的夾角為60°,則|2
a
-
b
|
=
 
考點(diǎn):數(shù)量積表示兩個(gè)向量的夾角
專題:平面向量及應(yīng)用
分析:由題意可得原式=
(2
a
-
b
)2
=
4
a
2
-4
a
b
+
b
2
=
4|
a
|
2
-4|
a
|•|
b
|•cos60°+|
b
|
2
,代入已知數(shù)據(jù)化簡(jiǎn)可得.
解答: 解:由題意可得|2
a
-
b
|
=
(2
a
-
b
)2

=
4
a
2
-4
a
b
+
b
2

=
4|
a
|
2
-4|
a
|•|
b
|•cos60°+|
b
|
2

=
12-4×1××
1
2
+12
=
3

故答案為:
3
點(diǎn)評(píng):本題考查數(shù)量積與向量的夾角,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求不等式ax+1<a2+x(a∈R)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三個(gè)數(shù)成等比數(shù)列,其和為28,其積為512,求這三個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三個(gè)半徑都是10cm的小球放在一個(gè)半球面的碗中,小球的頂端恰好與碗的上沿處于同于水平面,則這個(gè)碗的半徑R是
 
cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

與圓(x-2)2+y2=1外切,且與直線x+1=0相切的動(dòng)圓圓心的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩個(gè)正數(shù)x,y滿足x+4y+5-xy=0,則xy取最小值時(shí)x=
 
,y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(cosθ,sinθ),向量
b
=(1,3),且
a
b
,則
sinθ+cosθ
sinθ-cosθ
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a≥2,
1
0
(2x+b)dx=2
,則4a+2a+b的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l:y=kx+4-2k與曲線y=1+
4-x2
有兩個(gè)交點(diǎn)時(shí),實(shí)數(shù)k的取值范圍是( 。
A、(0,
5
12
B、(
5
12
,+∞)
C、(
1
3
3
4
D、(
5
12
,
3
4
]

查看答案和解析>>

同步練習(xí)冊(cè)答案