三棱錐A-BCD的棱長(zhǎng)全相等,E是AD中點(diǎn),則直線CE與直線BD所成角的余弦值為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
A
分析:題目要求解的是兩條異面直線所成角的余弦值,且給出了棱AD的中點(diǎn)E,可以想到再找AB的中點(diǎn)F,連接兩中點(diǎn)EF,得到EF∥BD,則直線CE與直線BD所成角轉(zhuǎn)化為直線CE與直線EF所成角,在三角形CEF中運(yùn)用余弦定理可求∠CEF的余弦值,則直線CE與直線BD所成角的余弦值可求.
解答:解:如圖,取AB中點(diǎn)F,連接EF,因?yàn)镋、F分別為AD、AB的中點(diǎn),則EF為三角形ABD的中位線,所以EF∥BD,
所以直線EF與CE所成的角即為直線CE與直線BD所成角,
因?yàn)槿忮FA-BCD的棱長(zhǎng)全相等,設(shè)棱長(zhǎng)為2a,則EF=a,
在等邊三角形ABC中,因?yàn)镕為AB的中點(diǎn),所以CF為邊AB上的高,
所以CF=,
則CE=CF=,
在三角形CEF中,=
所以,直線CE與直線BD所成角的余弦值為
故選A.
點(diǎn)評(píng):本題考查空間點(diǎn)、線、面的位置關(guān)系及學(xué)生的空間想象能力、求異面直線角的能力.在立體幾何中找平行線是解決問(wèn)題的一個(gè)重要技巧,這個(gè)技巧就是通過(guò)三角形的中位線找平行線,如果試題的已知中涉及到多個(gè)中點(diǎn),則找中點(diǎn)是出現(xiàn)平行線的關(guān)鍵技巧,此題是中低檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,各面都是等邊三角形的三棱錐A-BCD的棱長(zhǎng)為8cm,在棱AB、CD上各有一點(diǎn)E、F,若AE=CF=3cm,則線段EF的長(zhǎng)為
 
cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知三棱錐A-BCD的棱長(zhǎng)均為a,E為AD的中點(diǎn),連接CE.
(1)請(qǐng)作出AO⊥面BCD于O,則O是△BCD的外心嗎?
(2)求二面角A-CD-B的平面角的余弦值.
(3)求CE與底面BCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三棱錐A-BCD的棱長(zhǎng)全相等,E是AD中點(diǎn),則直線CE與直線BD所成角的余弦值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知三棱錐A-BCD的棱長(zhǎng)都相等,E,F(xiàn)分別是棱AB,CD的中點(diǎn),則EF與BC所成的角是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

M、N分別是三棱錐A-BCD的棱AB、CD的中點(diǎn),則下列各式成立的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案