【題目】已知函數(shù)f(x)=sin2 + sin cos . (Ⅰ)求f(x)的最小正周期;
(Ⅱ)若x∈[ ,π],求f(x)的最大值與最小值.
【答案】解:(Ⅰ)函數(shù)f(x)=sin2 + sin cos
= + sinx
= sinx﹣ cosx+
=sin(x﹣ )+ ,
由T= =2π,
知f(x)的最小正周期是2π;
(Ⅱ)由f(x)=sin(x﹣ )+ ,
且x∈[ ,π],
∴ ≤x﹣ ≤ ,
∴ ≤sin(x﹣ )≤1,
∴1≤sin(x﹣ )+ ≤ ,
∴當(dāng)x= 時(shí),f(x)取得最大值 ,
x=π時(shí),f(x)取得最小值1.
【解析】(Ⅰ)化函數(shù)f(x)為正弦型函數(shù),由T= 求出f(x)的最小正周期;(Ⅱ)根據(jù)正弦函數(shù)的圖象與性質(zhì),求出f(x)在x∈[ ,π]上的最大值與最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x)的圖象關(guān)于點(diǎn)(﹣ ,0)成中心對(duì)稱,且對(duì)任意的實(shí)數(shù)x都有 ,f(﹣1)=1,f(0)=﹣2,則f(1)+f(2)++f(2 017)=( )
A.0
B.﹣2
C.1
D.﹣4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù)f(x),若在定義域內(nèi)存在實(shí)數(shù)x,滿足f(﹣x)=﹣f(x),則稱f(x)為“局部奇函數(shù)”. (I) 已知二次函數(shù)f(x)=ax2+2bx﹣3a(a,b∈R),試判斷f(x)是否為“局部奇函數(shù)”?并說明理由;
(II) 設(shè)f(x)=2x+m﹣1是定義在[﹣1,2]上的“局部奇函數(shù)”,求實(shí)數(shù)m的取值范圍;
(III) 設(shè)f(x)=4x﹣m2x+1+m2﹣3,若f(x)不是定義域R上的“局部奇函數(shù)”,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2﹣4x﹣14y+45=0及點(diǎn)Q(﹣2,3).
(1)若M為圓C上任一點(diǎn),求|MQ|的最大值和最小值;
(2)若實(shí)數(shù)m,n滿足m2+n2﹣4m﹣14n+45=0,求k= 的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題類A)以橢圓 +y2=1(a>1)短軸端點(diǎn)A(0,1)為直角頂點(diǎn),作橢圓內(nèi)接等腰直角三角形,試判斷并推證能作出多少個(gè)符合條件的三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】東莞某家具生產(chǎn)廠家根據(jù)市場調(diào)查分析,決定調(diào)整新產(chǎn)品生產(chǎn)方案,準(zhǔn)備每周(按40個(gè)工時(shí)計(jì)算)生產(chǎn)書桌、書柜、電腦椅共120張,且書桌至少生產(chǎn)20張.已知生產(chǎn)這些家具每張所需工時(shí)和每張產(chǎn)值如表:
家具名稱 | 書桌 | 書柜 | 電腦椅 |
工 時(shí) | |||
產(chǎn)值(千元) | 4 | 3 | 2 |
問每周應(yīng)生產(chǎn)書桌、書柜、電腦椅各多少張,才能使產(chǎn)值最高?最高產(chǎn)值是多少?(以千元為單位)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F是拋物線y2=x的焦點(diǎn),A,B是該拋物線上的兩點(diǎn),|AF|+|BF|=3,則線段AB的中點(diǎn)到y(tǒng)軸的距離為( )
A.
B.1
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,∠APB=∠BPC=∠APC=90°,O在△ABC內(nèi),∠OPC=45°,∠OPA=60°,則∠OPB的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+ +x(a>0).若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x﹣2y=0垂直, (Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com