【題目】拋物線的焦點(diǎn)為F ,已知點(diǎn)A ,B 為拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足.過弦AB 的中點(diǎn)M 作拋物線準(zhǔn)線的垂線MN ,垂足為N,則 的最大值為__________

【答案】1

【解析】

設(shè)|AF|=a,|BF|=b,連接AF、BF.由拋物線定義得2|MN|=a+b,由余弦定理可得|AB|2=

(a+b)2﹣3ab,進(jìn)而根據(jù)基本不等式,求得|AB|的取值范圍,從而得到本題答案.

設(shè)|AF|=a,|BF|=b,

由拋物線定義,得AF|=|AQ||BF|=|BP|

在梯形ABPQ中,∴2|MN|=|AQ|+|BP|=a+b.

由余弦定理得,

|AB|2=a2+b2﹣2abcos60°=a2+b2﹣ab

配方得,|AB|2=(a+b)2﹣3ab,

又∵ab2,

(a+b)2﹣3ab(a+b)2(a+b)2=(a+b)2

得到|AB|≥(a+b).

1,即的最大值為1.

故答案為:1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的標(biāo)準(zhǔn)方程為該橢圓經(jīng)過點(diǎn),且離心率為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過橢圓長軸上一點(diǎn)作兩條互相垂直的弦.若弦的中點(diǎn)分別為,證明:直線恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C(ab0)過點(diǎn),離心率為.

1)求橢圓C的方程;

2)若斜率為的直線l與橢圓C交于AB兩點(diǎn),試探究是否為定值?若是定值,則求出此定值;若不是定值,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題方程表示雙曲線;命題不等式的解集是. 為假 為真,的取值范圍.

【答案】

【解析】試題分析:由命題方程表示雙曲線,求出的取值范圍,由命題不等式的解集是,求出的取值范圍,由為假, 為真,得出一真一假,分兩種情況即可得出的取值范圍.

試題解析:

范圍為

型】解答
結(jié)束】
18

【題目】如圖,設(shè)是圓上的動(dòng)點(diǎn)點(diǎn)軸上的投影, 上一點(diǎn),.

1)當(dāng)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;

2)求過點(diǎn)且斜率為的直線被所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

求曲線C的直角坐標(biāo)方程與直線l的極坐標(biāo)方程;

若直線與曲線C交于點(diǎn)不同于原點(diǎn),與直線l交于點(diǎn)B,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工藝公司要對(duì)某種工藝品深加工,已知每個(gè)工藝品進(jìn)價(jià)為20元,每個(gè)的加工費(fèi)為n元,銷售單價(jià)為x.根據(jù)市場(chǎng)調(diào)查,須有,,同時(shí)日銷售量m(單位:個(gè))與成正比.當(dāng)每個(gè)工藝品的銷售單價(jià)為29元時(shí),日銷售量為1000個(gè).

1)寫出日銷售利潤y(單位:元)與x的函數(shù)關(guān)系式;

2)當(dāng)每個(gè)工藝品的加工費(fèi)用為5元時(shí),要使該公司的日銷售利潤為100萬元,試確定銷售單價(jià)x的值.(提示:函數(shù)的圖象在上有且只有一個(gè)公共點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列不等式的證法,再解決后面的問題:

已知,,求證:.

證明:構(gòu)造函數(shù),

.

因?yàn)閷?duì)一切,恒有,

所以,從而得.

1)若,,請(qǐng)寫出上述結(jié)論的推廣式;

2)參考上述證法,對(duì)你推廣的結(jié)論加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù).

1)若,求證:函數(shù)為奇函數(shù);

2)若,判斷并證明函數(shù)的單調(diào)性;

3)若,函數(shù)在區(qū)間上的取值范圍是,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的是( )

A. 為真命題,則為真命題 B. 恒成立

C. 命題“”的否定是“ D. 命題“若”的逆否命題是“若,則

查看答案和解析>>

同步練習(xí)冊(cè)答案