【題目】2020年春節(jié)前后,一場突如其來的新冠肺炎疫情在武漢出現(xiàn)并很快地傳染開來(已有證據(jù)表明2019年10月、11月國外已經(jīng)存在新冠肺炎病毒),人傳人,傳播快,傳播廣,病亡率高,對人類生命形成巨大危害.在中華人民共和國,在中共中央、國務院強有力的組織領導下,全國人民萬眾一心抗擊、防控新冠肺炎,疫情早在3月底已經(jīng)得到了非常好的控制(累計病亡人數(shù)3869人).然而,國外因國家體制、思想觀念與中國的不同,防控不力,新冠肺炎疫情越來越嚴重.據(jù)美國約翰斯·霍普金斯大學每日下午6時公布的統(tǒng)計數(shù)據(jù),選取5月6日至5月10日的美國的新冠肺炎病亡人數(shù)如下表(其中t表示時間變量,日期“5月6日”、“5月7日”對應于“t=6"、“t=7",依次下去),由下表求得累計病亡人數(shù)與時間的相關系數(shù)r=0.98.
(1)在5月6日~10日,美國新冠肺炎病亡人數(shù)與時間(日期)是否呈現(xiàn)線性相關性?
(2)選擇對累計病亡人數(shù)四舍五入后個位、十位均為0的近似數(shù),求每日累計病亡人數(shù)y隨時間t變化的線性回歸方程;
(3)請估計美國5月11日新冠肺炎病亡累計人數(shù),請初步預測病亡人數(shù)達到9萬的日期.
附:回歸方程中斜率和截距最小二乘估計公式分別為
【答案】(1)是;(2);(3)82160人,5月16日
【解析】
(1)根據(jù)相關系數(shù)可得到結(jié)論;
(2)首先算出和,然后根據(jù)公式計算出答案即可;
(3)求出當時的值,然后解出不等式即可.
(1)每日累計病亡人數(shù)與時間的相關系數(shù),
所以每日病亡累計人數(shù)與時間呈現(xiàn)強線性相關性,
(2)5天5個時間的均值.
5天5個病亡累計人數(shù)的均值.
計算5個時間與其均值的差,計算5個累計病亡人數(shù)與其均值的差,制作下表:
日 期 | 5月6日 | 5月7日 | 5月8日 | 5月9日 | 5月10日 | 均值 |
時間 | 6 | 7 | 8 | 9 | 10 | |
新冠肺炎 累計病亡人數(shù) | 72300 | 75500 | 76900 | 78500 | 80000 | |
2 | 1 | 0 | 1 | 2 | ||
4340 | 1140 | 260 | 1860 | 3360 |
用公式進行計算:
,
.
所以每日累計病亡人數(shù)隨時間變化的線性回歸方程是.
(3)日期5月11日對應時間,,
所以,估計5月11日累計病亡人數(shù)是82160.
令,解得,
病亡人數(shù)要達到或超過9萬,即,對應于5月16日,
因此預測5月16日美國新冠肺炎病亡人數(shù)超過9萬人.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,正方形邊長為,將沿翻折到的位置,使得二面角的大小為.
(1)證明:平面平面;
(2)點在直線上,且直線與平面所成角正弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓過點,分別為橢圓C的左、右焦點且.
(1)求橢圓C的方程;
(2)過P點的直線與橢圓C有且只有一個公共點,直線平行于OP(O為原點),且與橢圓C交于兩點A、B,與直線交于點M(M介于A、B兩點之間).
(i)當面積最大時,求的方程;
(ii)求證:,并判斷,的斜率是否可以按某種順序構(gòu)成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)( )
命題①:對任意的是函數(shù)的零點;
命題②:對任意的是函數(shù)的極值點.
A.命題①和②都成立B.命題①和②都不成立
C.命題①成立,命題②不成立D.命題①不成立,命題②成立
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知傾斜角為的直線經(jīng)過拋物線的焦點,與拋物線相交于、兩點,且.
(1)求拋物線的方程;
(2)設為拋物線上任意一點(異于頂點),過做傾斜角互補的兩條直線、,交拋物線于另兩點、,記拋物線在點的切線的傾斜角為,直線的傾斜角為,求證:與互補.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,方程C:表示的曲線被稱作“四葉玫瑰線”(如圖)
(1)求以極點為圓心的單位圓與四葉玫瑰線交點的極坐標和直角坐標;
(2)直角坐標系的原點與極點重合,x軸正半軸與極軸重合.求直線l:上的點M與四葉攻瑰線上的點N的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓,點是它的兩個頂點,過原點且斜率為的直線與線段相交于點,且與橢圓相交于兩點.
(1)若,求的值;
(2)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方形的邊長為1,E,F分別是,的中點,交EF于點D,現(xiàn)沿SE,SF及EF把這個正方形折成一個四面體,使,,三點重合,重合后的點記為G,則在四面體中必有( )
A.平面EFG
B.設線段SF的中點為H,則平面SGE
C.四面體的體積為
D.四面體的外接球的表面積為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為徹底打贏脫貧攻堅戰(zhàn),2020年春,某市政府投入資金幫扶某農(nóng)戶種植蔬菜大棚脫貧致富,若該農(nóng)戶計劃種植冬瓜和茄子,總面積不超過15畝,幫扶資金不超過4萬元,冬瓜每畝產(chǎn)量10 000斤,成本2000元,每斤售價0.5元,茄子每畝產(chǎn)量5000斤,成本3000元,每斤售價1.4元,則該農(nóng)戶種植冬瓜和茄子利潤的最大值為( )
A.4萬元B.5.5萬元C.6.5萬元D.10萬元
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com