【題目】如圖,在圓錐中,已知,⊙O的直徑,點C在底面圓周上,且的中點.

(Ⅰ)證明:∥平面;

(Ⅱ)證明:平面平面;

(Ⅲ)求二面角的正弦值.

【答案】(Ⅰ)見解析(Ⅱ)見解析 (Ⅲ)

【解析】

(Ⅰ)要證∥平面轉證即可;

(Ⅱ)由題意易得,,從而平面,即可得到結果;

(Ⅲ)由(Ⅱ)知,平面平面,在平面中,過,則平面。過,垂足為,連結,則由三垂線定理得,即是二面角的平面角.

證明 :(Ⅰ)∵的中點,的圓心,則,

平面, 平面,

∥平面

證明:(Ⅱ)∵的中點,∴ .

底面⊙底面⊙,∴

, 平面,∴平面,

平面,

∴平面平面

(Ⅲ)由(Ⅱ)知,平面平面,在平面中,過,

平面。過,垂足為,連結,

則由三垂線定理得,

是二面角的平面角.

中, ,

中,可求得,

∴在中,,

.

即二面角的正弦值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= x2﹣(a2﹣a)lnx﹣x(a<0),且函數(shù)f(x)在x=2處取得極值.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若x∈[1,e],f(x)﹣m≤0成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中石化集團獲得了某地深海油田塊的開采權,集團在該地區(qū)隨機初步勘探了部分幾口井,取得了地質資料.進入全面勘探時期后,集團按網絡點米布置井位進行全面勘探.由于勘探一口井的費用很高,如果新設計的井位與原有井位重合或接近,便利用舊井的地質資料,不必打這口新井,以節(jié)約勘探費用,勘探初期數(shù)據(jù)資料見下表:

井號

1

2

3

4

5

6

坐標(x,y)(km)

(2,30)

(4,40)

(5,60)

(6,50)

(8,70)

(1,y)

鉆探深度(km)

2

4

5

6

8

10

出油量(L)

40

70

110

90

160

205

(Ⅰ)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為y=6.5x+a,求a,并估計y的預報值;

(Ⅱ)現(xiàn)準備勘探新井7(1,25),若通過1、3、5、7號井計算出的的值(,精確到0.01)與(I)中b,a的值差不超過10%,則使用位置最接近的已有舊井6(1,y),否則在新位置打開,請判斷可否使用舊井?(參考公式和計算結果:,,,

(Ⅲ)設出油量與勘探深度的比值k不低于20的勘探井稱為優(yōu)質井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質井數(shù)X的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知遞增等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2和a4的等差中項,
(1)求數(shù)列{an}的通項公式;
(2)若 ,Sn=b1+b2+…+bn , 求使Sn+n2n+1>62成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方體的棱長為,點分別是棱的中點,點在平面內,點在線段上,若,則的最小值為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓.

(Ⅰ)若圓的切線在軸和軸上的截距相等,求此切線的方程;

(Ⅱ)從圓外一點向該圓引一條切線,切點為,為坐標原點,且,求使取得最小值的點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面圖形ABB1A1C1C如圖4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC= ,A1B1=A1C1= .現(xiàn)將該平面圖形分別沿BC和B1C1折疊,使△ABC與△A1B1C1所在平面都與平面BB1C1C垂直,再分別連接A2A,A2B,A2C,得到如圖2所示的空間圖形,對此空間圖形解答下列問題.
(Ⅰ)證明:AA1⊥BC;
(Ⅱ)求AA1的長;
(Ⅲ)求二面角A﹣BC﹣A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓O為△ABC的外接圓,D為的中點,BD交AC于E.
(Ⅰ)證明:AD2=DEDB;
(Ⅱ)若AD∥BC,DE=2EB,AD= , 求圓O的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=+k(+lnx)(k為常數(shù)).
(1)當k=0時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當k≥0時,求函數(shù)f(x)的單調區(qū)間;
(3)若函數(shù)f(x)在(0,2)內存在兩個極值點,求k的取值范圍.

查看答案和解析>>

同步練習冊答案