9.若ln(2a+1)=ln(a2-2),則a${\;}^{lo{g}_{9}2}$=$\sqrt{2}$.

分析 利用方程的解得到a,然后求解表達(dá)式的值.

解答 解:ln(2a+1)=ln(a2-2),可得2a+1=a2-2,解得a=3或a=-1(舍去).
a${\;}^{lo{g}_{9}2}$=3${\;}^{lo{g}_{9}2}$=3${\;}^{\frac{1}{2}lo{g}_{3}2}$=$\sqrt{2}$.
故答案為:$\sqrt{2}$.

點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn)與方程根的關(guān)系,對(duì)數(shù)的運(yùn)算法則的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.不等式(x-3)2<1的解集是( 。
A.{x|x<2}B.{x|2<x<4}C.{x|x>4}D.{x|x<2{∪{x|x<4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)函數(shù)f(x)=$\sqrt{{e}^{x}+{x}^{2}-a}$(x>0,a∈R,e為自然對(duì)數(shù)的底數(shù)),若存在b∈[0,1]使f(f(b))=b成立,則a的取值范圍是1≤a≤e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知f(3x)=2xlog23,則f(22015)=4030.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.復(fù)數(shù)$\frac{{{{(1+i)}^{10}}}}{1-i}$等于(  )
A.16+16iB.-16-16iC.16-16iD.-16+16i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若f(x)是偶函數(shù),當(dāng)x>0時(shí),f(x)=x2-2x,則f(-$\frac{1}{2}$)=(  )
A.$\frac{5}{4}$B.$-\frac{5}{4}$C.$\frac{3}{4}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,a=c且滿足cosC+(cosA-$\sqrt{3}$sinA)cosB=0,則△ABC是( 。
A.鈍角三角形B.等邊三角形C.直角三角形D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)a為實(shí)數(shù),記函數(shù)f(x)=$\frac{1}{2}$ax2+x-a(x∈[$\sqrt{2}$,2])的最大值為g(a),
(1)求g(a).
(2)求g(a)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點(diǎn)為F1,F(xiàn)2,離心率為$\frac{\sqrt{3}}{3}$,P是橢圓C上一點(diǎn),PF1與y軸的交點(diǎn)為M,O為坐標(biāo)原點(diǎn),若|PF1|-|PF2|=$\frac{2}{3}$a,則|OM|:|PF2|=1:2.

查看答案和解析>>

同步練習(xí)冊(cè)答案